Suppr超能文献

用于增强光致发光的二硫化钼与10纳米纳米间隙阵列的等离子体杂化材料

Plasmonic Hybrids of MoS and 10-nm Nanogap Arrays for Photoluminescence Enhancement.

作者信息

Yang Yang, Pan Ruhao, Tian Shibing, Gu Changzhi, Li Junjie

机构信息

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China.

School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Micromachines (Basel). 2020 Dec 15;11(12):1109. doi: 10.3390/mi11121109.

Abstract

Monolayer MoS has attracted tremendous interest, in recent years, due to its novel physical properties and applications in optoelectronic and photonic devices. However, the nature of the atomic-thin thickness of monolayer MoS limits its optical absorption and emission, thereby hindering its optoelectronic applications. Hybridizing MoS by plasmonic nanostructures is a critical route to enhance its photoluminescence. In this work, the hybrid nanostructure has been proposed by transferring the monolayer MoS onto the surface of 10-nm-wide gold nanogap arrays fabricated using the shadow deposition method. By taking advantage of the localized surface plasmon resonance arising in the nanogaps, a photoluminescence enhancement of ~20-fold was achieved through adjusting the length of nanogaps. Our results demonstrate the feasibility of a giant photoluminescence enhancement for this hybrid of MoS/10-nm nanogap arrays, promising its further applications in photodetectors, sensors, and emitters.

摘要

近年来,单层二硫化钼(MoS)因其新颖的物理特性以及在光电器件和光子器件中的应用而备受关注。然而,单层MoS原子级薄的厚度特性限制了其光吸收和发射,从而阻碍了其在光电子领域的应用。通过等离子体纳米结构与MoS杂交是增强其光致发光的关键途径。在这项工作中,通过将单层MoS转移到采用阴影沉积法制备的10纳米宽的金纳米间隙阵列表面,提出了这种混合纳米结构。利用纳米间隙中产生的局域表面等离子体共振,通过调整纳米间隙的长度实现了约20倍的光致发光增强。我们的结果证明了MoS/10纳米间隙阵列这种混合物实现巨大光致发光增强的可行性,有望在光电探测器、传感器和发射器中得到进一步应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab7/7765256/116f557586b4/micromachines-11-01109-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验