Jiang Yong-Liang, Jin Hua, Yang Hong-Bo, Zhao Rong-Li, Wang Shiliang, Chen Yuxing, Zhou Cong-Zhao
From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China and.
Key Laboratory of Structural Biology, Chinese Academy of Science, Hefei, Anhui 230027, China.
J Biol Chem. 2017 Apr 14;292(15):6213-6224. doi: 10.1074/jbc.M116.770446. Epub 2017 Feb 28.
Protein -glycosylation is an important post-translational modification in all organisms, but deciphering the specific functions of these glycans is difficult due to their structural complexity. Understanding the glycosylation of mucin-like proteins presents a particular challenge as they are modified numerous times with both the enzymes involved and the glycosylation patterns being poorly understood. Here we systematically explored the -glycosylation pathway of a mucin-like serine-rich repeat protein PsrP from the human pathogen TIGR4. Previous works have assigned the function of 3 of the 10 glycosyltransferases thought to modify PsrP, GtfA/B, and Gtf3 as catalyzing the first two reactions to form a unified disaccharide core structure. We now use and glycosylation assays combined with hydrolytic activity assays to identify the glycosyltransferases capable of decorating this core structure in the third and fourth steps of glycosylation. Specifically, the full-length GlyE and GlyG proteins and the GlyD DUF1792 domain participate in both steps, whereas full-length GlyA and the GlyD GT8 domain catalyze only the fourth step. Incorporation of different sugars to the disaccharide core structure at multiple sites along the serine-rich repeats results in a highly polymorphic product. Furthermore, crystal structures of apo- and UDP-complexed GlyE combined with structural analyses reveal a novel Rossmann-fold "add-on" domain that we speculate to function as a universal module shared by GlyD, GlyE, and GlyA to forward the peptide acceptor from one enzyme to another. These findings define the complete glycosylation pathway of a bacterial glycoprotein and offer a testable hypothesis of how glycosyltransferase coordination facilitates glycan assembly.
蛋白质糖基化是所有生物体中一种重要的翻译后修饰,但由于聚糖结构复杂,难以解读这些聚糖的具体功能。了解黏蛋白样蛋白的糖基化是一项特别具有挑战性的任务,因为它们会被多次修饰,而且所涉及的酶和糖基化模式都知之甚少。在这里,我们系统地探索了人类病原体TIGR4中一种富含丝氨酸的黏蛋白样重复蛋白PsrP的O-糖基化途径。先前的研究已经确定了被认为修饰PsrP的10种糖基转移酶中的3种,即GtfA/B和Gtf3的功能,它们催化前两个反应以形成统一的二糖核心结构。我们现在使用O-糖基化分析和水解活性分析相结合的方法,来鉴定能够在糖基化的第三步和第四步修饰这个核心结构的糖基转移酶。具体来说,全长的GlyE和GlyG蛋白以及GlyD的DUF1792结构域参与了这两个步骤,而全长的GlyA和GlyD的GT8结构域仅催化第四步。沿着富含丝氨酸的重复序列在多个位点将不同的糖掺入二糖核心结构中,会产生高度多态的产物。此外,无配体和UDP复合的GlyE的晶体结构以及结构分析揭示了一种新的Rossmann折叠“附加”结构域,我们推测它作为GlyD、GlyE和GlyA共享的通用模块,将肽受体从一种酶传递到另一种酶。这些发现定义了一种细菌糖蛋白的完整糖基化途径,并为糖基转移酶协调如何促进聚糖组装提供了一个可检验的假设。