Mishra Vartika, Jana Asim K
Department of Biotechnology, Dr B R A National Institute of Technology, G T Road Bye Pass, Jalandhar, Punjab, 144011, India.
Appl Biochem Biotechnol. 2017 Sep;183(1):200-217. doi: 10.1007/s12010-017-2439-y. Epub 2017 Feb 28.
Sweet sorghum (Sorghum sp.) has high biomass yield. Hydrolysis of lignocellulosic sweet sorghum bagasse (SSB) to fermentable sugar could be useful for manufacture of biofuel or other fermentation products. Pretreatment of lignocellulosic biomass to degrade lignin before enzymatic hydrolysis is a key step. Fungal pretreatment of SSB with combined CuSO-gallic acid supplements in solid-state fermentation (SSF) to achieve higher lignin degradation, selectivity value (SV), and enzymatic hydrolysis to sugar was studied. Coriolus versicolor was selected due to high activities of ligninolytic enzymes laccase, lignin peroxidase (LiP), manganese peroxidase (MnP), polyphenol oxidase (PPO), and arylalcohol oxidase (AAO) and low activities of cellulolytic enzymes CMCase, FPase, and β-glucosidase with high lignin degradation and SV in 20 days. CuSO/gallic acid increased the activities of ligninolytic enzymes resulting in enhanced lignin degradations and SVs. Cumulative/synergistic effect of combined supplements further increased the activities of laccase, LiP, MnP, PPO, and AAO by 7.6, 14.6, 2.67, 2.06, and 2.15-folds, respectively (than control), resulting in highest lignin degradation 31.1 ± 1.4% w/w (1.56-fold) and SV 2.33 (3.58-fold). Enzymatic hydrolysis of pretreated SSB yielded higher (~2.2 times) fermentable sugar. The study showed combined supplements can improve fungal pretreatment of lignocellulosic biomass. XRD, SEM, FTIR, and TGA/DTG of SSB confirmed the results.
甜高粱(高粱属)具有较高的生物量产量。将木质纤维素甜高粱茎秆残渣(SSB)水解为可发酵糖可用于生物燃料或其他发酵产品的制造。在酶水解之前对木质纤维素生物质进行预处理以降解木质素是关键步骤。研究了在固态发酵(SSF)中用硫酸铜 - 没食子酸组合添加剂对SSB进行真菌预处理,以实现更高的木质素降解、选择性值(SV)以及酶水解为糖。由于云芝具有较高的木质素分解酶漆酶、木质素过氧化物酶(LiP)、锰过氧化物酶(MnP)、多酚氧化酶(PPO)和芳醇氧化酶(AAO)活性,以及较低的纤维素分解酶羧甲基纤维素酶(CMCase)、滤纸酶(FPase)和β - 葡萄糖苷酶活性,且在20天内具有较高的木质素降解和SV,因此被选用。硫酸铜/没食子酸提高了木质素分解酶的活性,导致木质素降解和SV增强。组合添加剂的累积/协同效应进一步使漆酶、LiP、MnP、PPO和AAO的活性分别提高了7.6、14.6、2.67、2.06和2.15倍(相对于对照),从而导致最高的木质素降解率为31.1±1.4% w/w(1.56倍)和SV为2.33(3.58倍)。预处理后的SSB的酶水解产生了更高(约2.2倍)的可发酵糖。该研究表明组合添加剂可以改善木质纤维素生物质的真菌预处理。SSB的X射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)和热重分析/微商热重分析(TGA/DTG)证实了该结果。