Suppr超能文献

基于深度学习的通用自动表面检测方法。

A Generic Deep-Learning-Based Approach for Automated Surface Inspection.

出版信息

IEEE Trans Cybern. 2018 Mar;48(3):929-940. doi: 10.1109/TCYB.2017.2668395. Epub 2017 Feb 24.

Abstract

Automated surface inspection (ASI) is a challenging task in industry, as collecting training dataset is usually costly and related methods are highly dataset-dependent. In this paper, a generic approach that requires small training data for ASI is proposed. First, this approach builds classifier on the features of image patches, where the features are transferred from a pretrained deep learning network. Next, pixel-wise prediction is obtained by convolving the trained classifier over input image. An experiment on three public and one industrial data set is carried out. The experiment involves two tasks: 1) image classification and 2) defect segmentation. The results of proposed algorithm are compared against several best benchmarks in literature. In the classification tasks, the proposed method improves accuracy by 0.66%-25.50%. In the segmentation tasks, the proposed method reduces error escape rates by 6.00%-19.00% in three defect types and improves accuracies by 2.29%-9.86% in all seven defect types. In addition, the proposed method achieves 0.0% error escape rate in the segmentation task of industrial data.

摘要

自动化表面检测(ASI)是工业领域中的一项具有挑战性的任务,因为收集训练数据集通常成本高昂,并且相关方法高度依赖于数据集。本文提出了一种适用于 ASI 的通用方法,该方法仅需少量的训练数据。首先,该方法基于图像块的特征构建分类器,其中特征是从预先训练好的深度学习网络中转移过来的。接下来,通过在输入图像上卷积训练好的分类器,得到像素级的预测结果。在三个公共数据集和一个工业数据集上进行了实验。实验涉及两个任务:1)图像分类,2)缺陷分割。将所提出算法的结果与文献中的几个最佳基准进行了比较。在分类任务中,所提出的方法将准确率提高了 0.66%-25.50%。在分割任务中,所提出的方法在三种缺陷类型中减少了 6.00%-19.00%的错误逃逸率,并在所有七种缺陷类型中提高了 2.29%-9.86%的准确率。此外,所提出的方法在工业数据的分割任务中实现了 0.0%的错误逃逸率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验