Suppr超能文献

钾通道候选基因可预测乳腺癌手术后继发性淋巴水肿的发生。

Potassium Channel Candidate Genes Predict the Development of Secondary Lymphedema Following Breast Cancer Surgery.

作者信息

Smoot Betty, Kober Kord M, Paul Steven M, Levine Jon D, Abrams Gary, Mastick Judy, Topp Kimberly, Conley Yvette P, Miaskowski Christine A

机构信息

Betty Smoot, PT, DPTSc, MAS, is Associate Professor, School of Medicine, University of California San Francisco. Kord M. Kober, PhD, is Assistant Professor; and Steven M. Paul, PhD, is Principal Statistician, School of Nursing, University of California San Francisco. Jon D. Levine, MD, is Professor; and Gary Abrams, MD, is Professor, School of Medicine, University of California San Francisco. Judy Mastick, RN, MN, is Project Director, School of Nursing, University of California San Francisco. Kimberly Topp, PT, PhD, is Professor, School of Medicine, University of California San Francisco. Yvette P. Conley, PhD, FAAN, is Professor, School of Nursing, University of Pittsburgh, Pennsylvania. Christine Miaskowski, PhD, RN, FAAN, is Professor, School of Nursing, University of California San Francisco.

出版信息

Nurs Res. 2017 Mar/Apr;66(2):85-94. doi: 10.1097/NNR.0000000000000203.

Abstract

BACKGROUND

Potassium (K) channels play an important role in lymph pump activity, lymph formation, lymph transport, and the functions of lymph nodes. No studies have examined the relationship between K channel candidate genes and the development of secondary lymphedema (LE).

OBJECTIVE

The study purpose was to evaluate for differences in genotypic characteristics in women who did (n = 155) or did not (n = 387) develop upper extremity LE following breast cancer treatment based on an analysis of single-nucleotide polymorphisms (SNPs) and haplotypes in 10 K channel genes.

METHODS

Upper extremity LE was diagnosed using bioimpedance resistance ratios. Logistic regression analyses were used to identify those SNPs and haplotypes that were associated with LE while controlling for relevant demographic, clinical, and genomic characteristics.

RESULTS

Patients with LE had a higher body mass index, had a higher number of lymph nodes removed, had more advanced disease, received adjuvant chemotherapy, received radiation therapy, and were less likely to have undergone a sentinel lymph node biopsy. One SNP in a voltage-gated K channel gene (KCNA1 rs4766311), four in two inward-rectifying K channel genes (KCNJ3 rs1037091 and KCNJ6 rs2211845, rs991985, rs2836019), and one in a two-pore K channel gene (KCNK3 rs1662988) were associated with LE.

DISCUSSION

These preliminary findings suggest that K channel genes play a role in the development of secondary LE.

摘要

背景

钾(K)通道在淋巴泵活动、淋巴形成、淋巴运输及淋巴结功能中发挥重要作用。尚无研究探讨K通道候选基因与继发性淋巴水肿(LE)发生发展之间的关系。

目的

本研究旨在通过分析10个K通道基因的单核苷酸多态性(SNP)和单倍型,评估乳腺癌治疗后发生(n = 155)或未发生(n = 387)上肢LE的女性在基因型特征上的差异。

方法

采用生物电阻抗比值诊断上肢LE。运用逻辑回归分析确定与LE相关的SNP和单倍型,同时控制相关人口统计学、临床和基因组特征。

结果

LE患者的体重指数较高,切除的淋巴结数量较多,疾病分期较晚,接受辅助化疗和放疗,且接受前哨淋巴结活检的可能性较小。电压门控K通道基因(KCNA1 rs4766311)中的一个SNP、两个内向整流K通道基因(KCNJ3 rs1037091和KCNJ6 rs2211845、rs991985、rs2836019)中的四个SNP以及双孔K通道基因(KCNK3 rs1662988)中的一个SNP与LE相关。

讨论

这些初步研究结果表明,K通道基因在继发性LE的发生发展中起作用。

相似文献

引用本文的文献

2
Etiology and treatment of cancer-related secondary lymphedema.癌症相关性继发性淋巴水肿的病因和治疗。
Clin Exp Metastasis. 2024 Aug;41(4):525-548. doi: 10.1007/s10585-023-10232-8. Epub 2023 Sep 30.
5
Lymphedema following cancer therapy: overview and options.癌症治疗后的淋巴水肿:概述和选择。
Clin Exp Metastasis. 2018 Aug;35(5-6):547-551. doi: 10.1007/s10585-018-9899-5. Epub 2018 May 17.

本文引用的文献

4
The contribution of K(+) channels to human thoracic duct contractility.钾离子通道对人胸导管收缩性的贡献。
Am J Physiol Heart Circ Physiol. 2014 Jul 1;307(1):H33-43. doi: 10.1152/ajpheart.00921.2013.
7
The UCSC Genome Browser database: 2014 update.UCSC 基因组浏览器数据库:2014 年更新。
Nucleic Acids Res. 2014 Jan;42(Database issue):D764-70. doi: 10.1093/nar/gkt1168. Epub 2013 Nov 21.
10
Pathophysiology of lymphedema.淋巴水肿的病理生理学。
Semin Oncol Nurs. 2013 Feb;29(1):4-11. doi: 10.1016/j.soncn.2012.11.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验