Suppr超能文献

资源有限环境下基于网络的儿童死亡率预测模型的决定因素与开发:一种数据挖掘方法

Determinants and development of a web-based child mortality prediction model in resource-limited settings: A data mining approach.

作者信息

Tesfaye Brook, Atique Suleman, Elias Noah, Dibaba Legesse, Shabbir Syed-Abdul, Kebede Mihiretu

机构信息

Health Policy and Planning Directorate, Ethiopian Federal Ministry of Health, Addis Ababa, Ethiopia.

Graduate Institute of Biomedical Informatics, Taipei Medical University, Taiwan.

出版信息

Comput Methods Programs Biomed. 2017 Mar;140:45-51. doi: 10.1016/j.cmpb.2016.11.013. Epub 2016 Nov 28.

Abstract

BACKGROUND

Improving child health and reducing child mortality rate are key health priorities in developing countries. This study aimed to identify determinant sand develop, a web-based child mortality prediction model in Ethiopian local language using classification data mining algorithm.

METHODS

Decision tree (using J48 algorithm) and rule induction (using PART algorithm) techniques were applied on 11,654 records of Ethiopian demographic and health survey data. Waikato Environment for Knowledge Analysis (WEKA) for windows version 3.6.8 was used to develop optimal models. 8157 (70%) records were randomly allocated to training group for model building while; the remaining 3496 (30%) records were allocated as the test group for model validation. The validation of the model was assessed using accuracy, sensitivity, specificity and area under Receiver Operating Characteristics (ROC) curve. Using Statistical Package for Social Sciences (SPSS) version 20.0; logistic regressions and Odds Ratio (OR) with 95% Confidence Interval (CI) was used to identify determinants of child mortality.

RESULTS

The child mortality rate was 72 deaths per 1000 live births. Breast-feeding (AOR= 1.46, (95% CI [1.22. 1.75]), maternal education (AOR= 1.40, 95% CI [1.11, 1.81]), family planning (AOR= 1.21, [1.08, 1.43]), preceding birth interval (AOR= 4.90, [2.94, 8.15]), presence of diarrhea (AOR= 1.54, 95% CI [1.32, 1.66]), father's education (AOR= 1.4, 95% CI [1.04, 1.78]), low birth weight (AOR= 1.2, 95% CI [0.98, 1.51]) and, age of the mother at first birth (AOR= 1.42, [1.01-1.89]) were found to be determinants for child mortality. The J48 model had better performance, accuracy (94.3%), sensitivity (93.8%), specificity (94.3%), Positive Predictive Value (PPV) (92.2%), Negative Predictive Value (NPV) (94.5%) and, the area under ROC (94.8%). Subsequent to developing an optimal prediction model, we relied on this model to develop a web-based application system for child mortality prediction.

CONCLUSION

In this study, nearly accurate results were obtained by employing decision tree and rule induction techniques. Determinants are identified and a web-based child mortality prediction model in Ethiopian local language is developed. Thus, the result obtained could support child health intervention programs in Ethiopia where trained human resource for health is limited. Advanced classification algorithms need to be tested to come up with optimal models.

摘要

背景

改善儿童健康状况和降低儿童死亡率是发展中国家卫生工作的重点。本研究旨在确定相关决定因素,并运用分类数据挖掘算法开发一个基于网络的、使用埃塞俄比亚当地语言的儿童死亡率预测模型。

方法

将决策树(使用J48算法)和规则归纳(使用PART算法)技术应用于11654条埃塞俄比亚人口与健康调查数据记录。使用适用于Windows版本3.6.8的怀卡托知识分析环境(WEKA)来开发最优模型。8157条(70%)记录被随机分配到用于模型构建的训练组;其余3496条(30%)记录被分配为用于模型验证的测试组。使用准确性、敏感性、特异性和受试者工作特征曲线(ROC)下的面积来评估模型的验证情况。使用社会科学统计软件包(SPSS)20.0版本;运用逻辑回归和95%置信区间(CI)的比值比(OR)来确定儿童死亡率的决定因素。

结果

儿童死亡率为每1000例活产中有72例死亡。母乳喂养(调整后比值比[AOR]=1.46,[95%CI[1.22,1.75]])、母亲教育程度(AOR=1.40,95%CI[1.11,1.81])、计划生育(AOR=1.21,[1.08,1.43])、上次生育间隔(AOR=4.90,[2.94,8.15])、腹泻情况(AOR=1.54,95%CI[1.32,1.66])、父亲教育程度(AOR=1.4,95%CI[1.04,1.78])、低出生体重(AOR=1.2,95%CI[0.98,1.51])以及母亲首次生育年龄(AOR=1.42,[1.01 - 1.89])被发现是儿童死亡率的决定因素。J48模型表现更佳,准确性为94.3%,敏感性为93.8%,特异性为94.3%,阳性预测值(PPV)为92.2%,阴性预测值(NPV)为94.5%,ROC曲线下面积为94.8%。在开发出最优预测模型之后,我们依靠该模型开发了一个基于网络的儿童死亡率预测应用系统。

结论

在本研究中,通过运用决策树和规则归纳技术获得了近乎准确的结果。确定了相关决定因素,并开发了一个使用埃塞俄比亚当地语言的基于网络的儿童死亡率预测模型。因此,所获结果可为埃塞俄比亚卫生人力资源有限地区的儿童健康干预项目提供支持。需要测试先进的分类算法以得出最优模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验