Suppr超能文献

人工智能在母婴健康中的作用:进展、争议及未来方向。

The role of artificial intelligence in maternal and child health: Progress, controversies, and future directions.

作者信息

Victor Audêncio

机构信息

Public Health Postgraduate Program, School of Public Health, University of São Paulo, São Paulo, Brazil.

Department of Nutrition, Ministry of Health of Mozambique, Zambezia, Mozambique.

出版信息

PLOS Digit Health. 2025 Jul 17;4(7):e0000938. doi: 10.1371/journal.pdig.0000938. eCollection 2025 Jul.

Abstract

This debate paper examines the transformative potential of Artificial Intelligence (AI), specifically through Machine Learning (ML), in enhancing preventive measures in maternal and child health (MCH). With the proliferation of Big Data, ML has become crucial in handling complex, non-linear interactions among health determinants to not only predict but also prevent adverse outcomes. This paper underscores AI's applications in early interventions that could decrease the incidence of MCH issues. It reviews technological advancements while addressing ethical, practical, and data-related challenges in applying AI in preventive healthcare. Emphasis is placed on recent supervised, unsupervised, and reinforcement learning applications that significantly advance preventive care, particularly in low-resource settings. The manuscript discusses the development of AI models for early diagnosis, comprehensive risk assessments, and customized preventive interventions, while highlighting challenges like data diversity, privacy issues, and integrating multimodal health data.

摘要

这篇辩论文章探讨了人工智能(AI),特别是通过机器学习(ML),在加强母婴健康(MCH)预防措施方面的变革潜力。随着大数据的激增,ML在处理健康决定因素之间复杂的非线性相互作用方面变得至关重要,不仅可以预测而且可以预防不良后果。本文强调了AI在早期干预中的应用,这些干预可以降低MCH问题的发生率。它回顾了技术进步,同时解决了在预防性医疗保健中应用AI时的伦理、实践和数据相关挑战。重点是最近的监督学习、无监督学习和强化学习应用,这些应用显著推进了预防性护理,特别是在资源匮乏的环境中。该手稿讨论了用于早期诊断、全面风险评估和定制预防性干预的AI模型的开发,同时强调了数据多样性、隐私问题和整合多模态健康数据等挑战。

相似文献

1
The role of artificial intelligence in maternal and child health: Progress, controversies, and future directions.
PLOS Digit Health. 2025 Jul 17;4(7):e0000938. doi: 10.1371/journal.pdig.0000938. eCollection 2025 Jul.
2
Artificial intelligence in nutrition and ageing research - A primer on the benefits.
Maturitas. 2025 Jul 7;200:108662. doi: 10.1016/j.maturitas.2025.108662.
4
Integrating artificial intelligence in healthcare: applications, challenges, and future directions.
Future Sci OA. 2025 Dec;11(1):2527505. doi: 10.1080/20565623.2025.2527505. Epub 2025 Jul 4.
5
Transformative potential of artificial intelligence in US CDC HIV interventions: balancing innovation with health privacy.
AIDS. 2025 Aug 1;39(10):1311-1321. doi: 10.1097/QAD.0000000000004220. Epub 2025 Jul 10.
8
Advancements in AI based healthcare techniques with FOCUS ON diagnostic techniques.
Comput Biol Med. 2024 Sep;179:108917. doi: 10.1016/j.compbiomed.2024.108917. Epub 2024 Jul 25.

本文引用的文献

1
Applied artificial intelligence for global child health: Addressing biases and barriers.
PLOS Digit Health. 2024 Aug 22;3(8):e0000583. doi: 10.1371/journal.pdig.0000583. eCollection 2024 Aug.
2
Machine learning models for predicting preeclampsia: a systematic review.
BMC Pregnancy Childbirth. 2024 Jan 2;24(1):6. doi: 10.1186/s12884-023-06220-1.
3
Digital Health Interventions to Improve Access to and Quality of Primary Health Care Services: A Scoping Review.
Int J Environ Res Public Health. 2023 Sep 28;20(19):6854. doi: 10.3390/ijerph20196854.
4
Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications.
Front Endocrinol (Lausanne). 2023 May 19;14:1130139. doi: 10.3389/fendo.2023.1130139. eCollection 2023.
5
Deep Neural Networks and Tabular Data: A Survey.
IEEE Trans Neural Netw Learn Syst. 2024 Jun;35(6):7499-7519. doi: 10.1109/TNNLS.2022.3229161. Epub 2024 Jun 3.
6
Enabling Fairness in Healthcare Through Machine Learning.
Ethics Inf Technol. 2022;24(3):39. doi: 10.1007/s10676-022-09658-7. Epub 2022 Aug 31.
7
Machine learning to predict pregnancy outcomes: a systematic review, synthesizing framework and future research agenda.
BMC Pregnancy Childbirth. 2022 Apr 22;22(1):348. doi: 10.1186/s12884-022-04594-2.
8
Perinatal health predictors using artificial intelligence: A review.
Womens Health (Lond). 2021 Jan-Dec;17:17455065211046132. doi: 10.1177/17455065211046132.
9
Neonatal mortality prediction with routinely collected data: a machine learning approach.
BMC Pediatr. 2021 Jul 21;21(1):322. doi: 10.1186/s12887-021-02788-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验