Suppr超能文献

智能医疗保健中使用机器学习方法预测儿童死亡率的预测分析。

Predictive analytics in smart healthcare for child mortality prediction using a machine learning approach.

作者信息

Iqbal Farrukh, Satti Muhammad Islam, Irshad Azeem, Shah Mohd Asif

机构信息

Department of Computer Science, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST), Karachi, Pakistan.

Department of Computer Science, Millennium Institute of Technology & Entrepreneurship (MiTE), Karachi, Pakistan.

出版信息

Open Life Sci. 2023 Jul 11;18(1):20220609. doi: 10.1515/biol-2022-0609. eCollection 2023.

Abstract

In developing countries, child health and restraining under-five child mortality are one of the fundamental concerns. UNICEF adopted sustainable development goal 3 (SDG3) to reduce the under-five child mortality rate globally to 25 deaths per 1,000 live births. The under-five mortality rate is 69 deaths per 1,000 live child-births in Pakistan as reported by the Demographic and Health Survey (2018). Predictive analytics has the power to transform the healthcare industry, personalizing care for every individual. Pakistan Demographic Health Survey (2017-2018), the publicly available dataset, is used in this study and multiple imputation methods are adopted for the treatment of missing values. The information gain, a feature selection method, ranked the information-rich features and examine their impact on child mortality prediction. The synthetic minority over-sampling method (SMOTE) balanced the training dataset, and four supervised machine learning classifiers have been used, namely the decision tree classifier, random forest classifier, naive Bayes classifier, and extreme gradient boosting classifier. For comparative analysis, accuracy, precision, recall, and 1-score have been used. Eventually, a predictive analytics framework is built that predicts whether the child is alive or dead. The number under-five children in a household, preceding birth interval, family members, mother age, age of mother at first birth, antenatal care visits, breastfeeding, child size at birth, and place of delivery were found to be critical risk factors for child mortality. The random forest classifier performed efficiently and predicted under-five child mortality with accuracy (93.8%), precision (0.964), recall (0.971), and 1-score (0.967). The findings could greatly assist child health intervention programs in decision-making.

摘要

在发展中国家,儿童健康和降低五岁以下儿童死亡率是基本关切之一。联合国儿童基金会通过了可持续发展目标3(SDG3),以将全球五岁以下儿童死亡率降至每1000例活产25例死亡。据人口与健康调查(2018年)报告,巴基斯坦的五岁以下儿童死亡率为每1000例活产69例死亡。预测分析有能力改变医疗行业,为每个人提供个性化护理。本研究使用了公开可用的数据集巴基斯坦人口与健康调查(2017 - 2018年),并采用多种插补方法处理缺失值。信息增益作为一种特征选择方法,对信息丰富的特征进行排名,并研究它们对儿童死亡率预测的影响。合成少数过采样技术(SMOTE)平衡了训练数据集,并使用了四种监督式机器学习分类器,即决策树分类器、随机森林分类器、朴素贝叶斯分类器和极端梯度提升分类器。为了进行比较分析,使用了准确率、精确率、召回率和F1分数。最终构建了一个预测分析框架,用于预测儿童是存活还是死亡。研究发现,家庭中五岁以下儿童的数量、上次生育间隔、家庭成员、母亲年龄、初育时母亲年龄、产前检查次数、母乳喂养情况、出生时儿童大小以及分娩地点是儿童死亡率的关键风险因素。随机森林分类器表现高效,预测五岁以下儿童死亡率的准确率为93.8%,精确率为0.964,召回率为0.971,F1分数为0.967。这些研究结果可为儿童健康干预项目的决策提供极大帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ba9/10350886/c4113284fffa/j_biol-2022-0609-fig001.jpg

相似文献

1
Predictive analytics in smart healthcare for child mortality prediction using a machine learning approach.
Open Life Sci. 2023 Jul 11;18(1):20220609. doi: 10.1515/biol-2022-0609. eCollection 2023.
2
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
Clin Orthop Relat Res. 2020 Jul;478(7):0-1618. doi: 10.1097/CORR.0000000000001251.
3
Predictive analysis on the factors associated with birth Outcomes: A machine learning perspective.
Int J Med Inform. 2024 Sep;189:105529. doi: 10.1016/j.ijmedinf.2024.105529. Epub 2024 Jun 19.
4
Machine Learning Algorithms for understanding the determinants of under-five Mortality.
BioData Min. 2022 Sep 24;15(1):20. doi: 10.1186/s13040-022-00308-8.
5
Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
Med Phys. 2018 Jul;45(7):3449-3459. doi: 10.1002/mp.12967. Epub 2018 Jun 13.
6
Diabetes disease detection and classification on Indian demographic and health survey data using machine learning methods.
Diabetes Metab Syndr. 2023 Jan;17(1):102690. doi: 10.1016/j.dsx.2022.102690. Epub 2022 Dec 5.
7
Machine Learning Hybrid Model for the Prediction of Chronic Kidney Disease.
Comput Intell Neurosci. 2023 Mar 14;2023:9266889. doi: 10.1155/2023/9266889. eCollection 2023.

引用本文的文献

1
Blockchain in Critical Care.
Indian J Crit Care Med. 2025 Jun;29(6):525-530. doi: 10.5005/jp-journals-10071-24991. Epub 2025 Jun 5.
2
Trajectory of breastfeeding among Chinese women and risk prediction models based on machine learning: a cohort study.
BMC Pregnancy Childbirth. 2024 Dec 24;24(1):858. doi: 10.1186/s12884-024-07010-z.

本文引用的文献

1
Neonatal Disease Prediction Using Machine Learning Techniques.
J Healthc Eng. 2023 Feb 23;2023:3567194. doi: 10.1155/2023/3567194. eCollection 2023.
4
Use of Machine Learning Algorithms for Prediction of Fetal Risk using Cardiotocographic Data.
Int J Appl Basic Med Res. 2019 Oct-Dec;9(4):226-230. doi: 10.4103/ijabmr.IJABMR_370_18. Epub 2019 Oct 11.
9
Determinants and development of a web-based child mortality prediction model in resource-limited settings: A data mining approach.
Comput Methods Programs Biomed. 2017 Mar;140:45-51. doi: 10.1016/j.cmpb.2016.11.013. Epub 2016 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验