Suppr超能文献

通过融合脑电图反应和情感分析预测广告偏好

Prediction of advertisement preference by fusing EEG response and sentiment analysis.

作者信息

Gauba Himaanshu, Kumar Pradeep, Roy Partha Pratim, Singh Priyanka, Dogra Debi Prosad, Raman Balasubramanian

机构信息

Department of Computer Science and Engineering, Indian Institute of Technology, Roorkee, India.

Department of Computer Science and Engineering, Indian Institute of Technology, Roorkee, India.

出版信息

Neural Netw. 2017 Aug;92:77-88. doi: 10.1016/j.neunet.2017.01.013. Epub 2017 Feb 16.

Abstract

This paper presents a novel approach to predict rating of video-advertisements based on a multimodal framework combining physiological analysis of the user and global sentiment-rating available on the internet. We have fused Electroencephalogram (EEG) waves of user and corresponding global textual comments of the video to understand the user's preference more precisely. In our framework, the users were asked to watch the video-advertisement and simultaneously EEG signals were recorded. Valence scores were obtained using self-report for each video. A higher valence corresponds to intrinsic attractiveness of the user. Furthermore, the multimedia data that comprised of the comments posted by global viewers, were retrieved and processed using Natural Language Processing (NLP) technique for sentiment analysis. Textual contents from review comments were analyzed to obtain a score to understand sentiment nature of the video. A regression technique based on Random forest was used to predict the rating of an advertisement using EEG data. Finally, EEG based rating is combined with NLP-based sentiment score to improve the overall prediction. The study was carried out using 15 video clips of advertisements available online. Twenty five participants were involved in our study to analyze our proposed system. The results are encouraging and these suggest that the proposed multimodal approach can achieve lower RMSE in rating prediction as compared to the prediction using only EEG data.

摘要

本文提出了一种基于多模态框架预测视频广告评级的新方法,该框架结合了用户的生理分析和互联网上可用的全球情感评级。我们融合了用户的脑电图(EEG)波形和视频相应的全球文本评论,以更精确地了解用户的偏好。在我们的框架中,要求用户观看视频广告,同时记录EEG信号。使用自我报告为每个视频获得效价分数。较高的效价对应于用户的内在吸引力。此外,使用自然语言处理(NLP)技术检索和处理由全球观众发布的评论组成的多媒体数据,以进行情感分析。分析评论的文本内容以获得分数,以了解视频的情感性质。使用基于随机森林的回归技术,利用EEG数据预测广告的评级。最后,将基于EEG的评级与基于NLP的情感分数相结合,以改进整体预测。该研究使用了15个在线提供的广告视频片段进行。25名参与者参与了我们的研究,以分析我们提出的系统。结果令人鼓舞,这些结果表明,与仅使用EEG数据进行预测相比,所提出的多模态方法在评级预测中可以实现更低的均方根误差(RMSE)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验