Soria Morillo Luis M, Alvarez-Garcia Juan A, Gonzalez-Abril Luis, Ortega Ramírez Juan A
Computer Languages and Systems Dept, University of Seville, Avda. Reina Mercedes s/n, 41012, Seville, Spain.
Applied Economics I Dept, University of Seville, Avda. Ramon y Cajal, 1, 41018, Seville, Spain.
Biomed Eng Online. 2016 Jul 15;15 Suppl 1(Suppl 1):75. doi: 10.1186/s12938-016-0181-2.
In this paper a new approach is applied to the area of marketing research. The aim of this paper is to recognize how brain activity responds during the visualization of short video advertisements using discrete classification techniques. By means of low cost electroencephalography devices (EEG), the activation level of some brain regions have been studied while the ads are shown to users. We may wonder about how useful is the use of neuroscience knowledge in marketing, or what could provide neuroscience to marketing sector, or why this approach can improve the accuracy and the final user acceptance compared to other works.
By using discrete techniques over EEG frequency bands of a generated dataset, C4.5, ANN and the new recognition system based on Ameva, a discretization algorithm, is applied to obtain the score given by subjects to each TV ad.
The proposed technique allows to reach more than 75 % of accuracy, which is an excellent result taking into account the typology of EEG sensors used in this work. Furthermore, the time consumption of the algorithm proposed is reduced up to 30 % compared to other techniques presented in this paper.
This bring about a battery lifetime improvement on the devices where the algorithm is running, extending the experience in the ubiquitous context where the new approach has been tested.
本文将一种新方法应用于市场研究领域。本文的目的是利用离散分类技术识别在短视频广告可视化过程中大脑活动的反应。借助低成本脑电图设备(EEG),在向用户展示广告时研究了一些脑区的激活水平。我们可能会思考神经科学知识在市场营销中的用途有多大,或者神经科学能为营销部门提供什么,又或者与其他研究相比,这种方法为何能提高准确性和最终用户接受度。
通过对生成数据集的EEG频段使用离散技术,应用C4.5、人工神经网络以及基于离散化算法Ameva的新识别系统,来获取受试者对每个电视广告给出的评分。
所提出的技术能够达到超过75%的准确率,考虑到本研究中使用的EEG传感器类型,这是一个出色的结果。此外,与本文中提出的其他技术相比,所提算法的时间消耗减少了30%。
这使得运行该算法的设备的电池续航时间得到改善,扩展了在已测试新方法的普适环境中的体验。