Delft Center for Systems and Control (DCSC), Delft University of Technology, Mekelweg 2, 2628 CD Delft, the Netherlands.
Mass Spectrometry Research Center (MSRC), Vanderbilt University, 465 21st Ave. South, 9160 Medical Research Building III, Nashville, TN 37240, USA; Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA; Department of Chemistry, Vanderbilt University, 7330 Stevenson Center Station B 351822, Nashville, TN 37235, USA.
Biochim Biophys Acta Proteins Proteom. 2017 Jul;1865(7):967-977. doi: 10.1016/j.bbapap.2017.02.016. Epub 2017 Feb 27.
Imaging mass spectrometry (IMS) is a molecular imaging technology that can measure thousands of biomolecules concurrently without prior tagging, making it particularly suitable for exploratory research. However, the data size and dimensionality often makes thorough extraction of relevant information impractical. To help guide and accelerate IMS data analysis, we recently developed a framework that integrates IMS measurements with anatomical atlases, opening up opportunities for anatomy-driven exploration of IMS data. One example is the automated anatomical interpretation of ion images, where empirically measured ion distributions are automatically decomposed into their underlying anatomical structures. While offering significant potential, IMS-atlas integration has thus far been restricted to the Allen Mouse Brain Atlas (AMBA) and mouse brain samples. Here, we expand the applicability of this framework by extending towards new animal species and a new set of anatomical atlases retrieved from the Scalable Brain Atlas (SBA). Furthermore, as many SBA atlases are based on magnetic resonance imaging (MRI) data, a new registration pipeline was developed that enables direct non-rigid IMS-to-MRI registration. These developments are demonstrated on protein-focused FTICR IMS measurements from coronal brain sections of a Parkinson's disease (PD) rat model. The measurements are integrated with an MRI-based rat brain atlas from the SBA. The new rat-focused IMS-atlas integration is used to perform automated anatomical interpretation and to find differential ions between healthy and diseased tissue. IMS-atlas integration can serve as an important accelerator in IMS data exploration, and with these new developments it can now be applied to a wider variety of animal species and modalities. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
成像质谱 (IMS) 是一种分子成像技术,能够在无需预先标记的情况下同时测量数千种生物分子,因此特别适合探索性研究。然而,由于数据量和维度通常使得彻底提取相关信息变得不切实际。为了帮助指导和加速 IMS 数据分析,我们最近开发了一个框架,该框架将 IMS 测量与解剖图谱相结合,为基于解剖结构的 IMS 数据探索开辟了机会。一个例子是离子图像的自动解剖解释,其中经验测量的离子分布自动分解为其潜在的解剖结构。虽然具有重要的潜力,但 IMS-图谱集成迄今为止仅限于 Allen 小鼠脑图谱 (AMBA) 和小鼠脑样本。在这里,我们通过扩展到新的动物物种和从可扩展脑图谱 (SBA) 中检索到的一组新的解剖图谱来扩展该框架的适用性。此外,由于许多 SBA 图谱基于磁共振成像 (MRI) 数据,因此开发了一种新的注册管道,能够实现直接的非刚性 IMS-MRI 注册。这些发展在帕金森病 (PD) 大鼠模型冠状脑切片的基于蛋白质的 FTICR IMS 测量中得到了验证。测量结果与 SBA 中的基于 MRI 的大鼠脑图谱进行了整合。新的大鼠聚焦 IMS-图谱集成用于执行自动解剖解释,并找到健康和患病组织之间的差异离子。IMS-图谱集成可以作为 IMS 数据探索的重要加速手段,并且随着这些新的发展,它现在可以应用于更广泛的动物物种和模式。本文是主题为 MALDI 成像的特刊的一部分,由 Corinna Henkel 博士和 Peter Hoffmann 教授编辑。