Suppr超能文献

多尺度图像分析揭示了同型球体中细胞微环境的结构异质性。

Multiscale image analysis reveals structural heterogeneity of the cell microenvironment in homotypic spheroids.

机构信息

Physical Biology/Physikalische Biologie (IZN, FB 15), Buchmann Institute for Molecular Life Sciences (BMLS), Cluster of Excellence Frankfurt - Macromolecular Complexes (CEF - MC), Goethe Universität - Frankfurt am Main (Campus Riedberg), Max-von-Laue-Straße 15 - D-60348 Frankfurt am Main, Germany.

出版信息

Sci Rep. 2017 Mar 3;7:43693. doi: 10.1038/srep43693.

Abstract

Three-dimensional multicellular aggregates such as spheroids provide reliable in vitro substitutes for tissues. Quantitative characterization of spheroids at the cellular level is fundamental. We present the first pipeline that provides three-dimensional, high-quality images of intact spheroids at cellular resolution and a comprehensive image analysis that completes traditional image segmentation by algorithms from other fields. The pipeline combines light sheet-based fluorescence microscopy of optically cleared spheroids with automated nuclei segmentation (F score: 0.88) and concepts from graph analysis and computational topology. Incorporating cell graphs and alpha shapes provided more than 30 features of individual nuclei, the cellular neighborhood and the spheroid morphology. The application of our pipeline to a set of breast carcinoma spheroids revealed two concentric layers of different cell density for more than 30,000 cells. The thickness of the outer cell layer depends on a spheroid's size and varies between 50% and 75% of its radius. In differently-sized spheroids, we detected patches of different cell densities ranging from 5 × 10 to 1 × 10cells/mm. Since cell density affects cell behavior in tissues, structural heterogeneities need to be incorporated into existing models. Our image analysis pipeline provides a multiscale approach to obtain the relevant data for a system-level understanding of tissue architecture.

摘要

三维细胞聚集体(如球体)为组织提供了可靠的体外替代物。在细胞水平上对球体进行定量描述是基础。我们提出了第一个提供完整球体在细胞分辨率的三维高质量图像的流水线,并完成了传统图像分割,该分割通过来自其他领域的算法完成。该流水线将光片荧光显微镜与自动核分割(F 分数:0.88)相结合,同时结合了图分析和计算拓扑学的概念。引入细胞图和 alpha 形状为每个核、细胞邻域和球体形态提供了超过 30 个特征。我们的流水线应用于一组乳腺癌球体,揭示了超过 30000 个细胞的两个不同细胞密度的同心层。外层细胞层的厚度取决于球体的大小,在其半径的 50%到 75%之间变化。在不同大小的球体中,我们检测到从 5×10 到 1×10 个细胞/mm 的不同细胞密度的斑块。由于细胞密度会影响组织中的细胞行为,因此需要将结构异质性纳入现有模型中。我们的图像分析流水线提供了一种多尺度方法,以获得系统水平理解组织架构的相关数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b5d/5334646/9791ddb4fec3/srep43693-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验