Suppr超能文献

基于视频的心脏脉搏提取的盲源分离技术评估。

Assessment of blind source separation techniques for video-based cardiac pulse extraction.

机构信息

TU Dresden, Institute of Biomedical Engineering, Dresden, Germany.

TU Dresden, University Hospital Carl Gustav Carus Dresden, Herzzentrum Dresdem GmbH, Dresden, Germany.

出版信息

J Biomed Opt. 2017 Mar 1;22(3):35002. doi: 10.1117/1.JBO.22.3.035002.

Abstract

Blind source separation (BSS) aims at separating useful signal content from distortions. In the contactless acquisition of vital signs by means of the camera-based photoplethysmogram (cbPPG), BSS has evolved the most widely used approach to extract the cardiac pulse. Despite its frequent application, there is no consensus about the optimal usage of BSS and its general benefit. This contribution investigates the performance of BSS to enhance the cardiac pulse from cbPPGs in dependency to varying input data characteristics. The BSS input conditions are controlled by an automated spatial preselection routine of regions of interest. Input data of different characteristics (wavelength, dominant frequency, and signal quality) from 18 postoperative cardiovascular patients are processed with standard BSS techniques, namely principal component analysis (PCA) and independent component analysis (ICA). The effect of BSS is assessed by the spectral signal-to-noise ratio (SNR) of the cardiac pulse. The preselection of cbPPGs, appears beneficial providing higher SNR compared to standard cbPPGs. Both, PCA and ICA yielded better outcomes by using monochrome inputs (green wavelength) instead of inputs of different wavelengths. PCA outperforms ICA for more homogeneous input signals. Moreover, for high input SNR, the application of ICA using standard contrast is likely to decrease the SNR.

摘要

盲源分离 (BSS) 的目的是从失真中分离有用的信号内容。在使用基于摄像头的光体积描记图 (cbPPG) 进行非接触式生命体征采集的过程中,BSS 已成为提取心搏的最广泛应用方法。尽管它被广泛应用,但对于 BSS 的最佳使用及其普遍益处尚未达成共识。本研究旨在探讨 BSS 在不同输入数据特征下增强 cbPPG 中心搏的性能。BSS 的输入条件由感兴趣区域的自动空间预选例程控制。来自 18 名心血管手术后患者的不同特征(波长、主导频率和信号质量)的输入数据,采用标准 BSS 技术,即主成分分析 (PCA) 和独立成分分析 (ICA) 进行处理。通过心搏的频谱信噪比 (SNR) 评估 BSS 的效果。cbPPG 的预选似乎有益,与标准 cbPPG 相比,它提供了更高的 SNR。与使用不同波长的输入相比,使用单色输入(绿光波长)时,PCA 和 ICA 都能产生更好的结果。对于更均匀的输入信号,PCA 优于 ICA。此外,对于高输入 SNR,使用标准对比度的 ICA 应用可能会降低 SNR。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验