Suppr超能文献

大脑(失调)组织与治疗干预的多因素因果模型:在阿尔茨海默病中的应用。

Multifactorial causal model of brain (dis)organization and therapeutic intervention: Application to Alzheimer's disease.

机构信息

Montreal Neurological Institute, McGill University, Montreal, Canada; Ludmer Centre for NeuroInformatics and Mental Health, Montreal, Canada.

Biospective Inc., Montreal, Canada.

出版信息

Neuroimage. 2017 May 15;152:60-77. doi: 10.1016/j.neuroimage.2017.02.058. Epub 2017 Feb 28.

Abstract

Generative models focused on multifactorial causal mechanisms in brain disorders are scarce and generally based on limited data. Despite the biological importance of the multiple interacting processes, their effects remain poorly characterized from an integrative analytic perspective. Here, we propose a spatiotemporal multifactorial causal model (MCM) of brain (dis)organization and therapeutic intervention that accounts for local causal interactions, effects propagation via physical brain networks, cognitive alterations, and identification of optimum therapeutic interventions. In this article, we focus on describing the model and applying it at the population-based level for studying late onset Alzheimer's disease (LOAD). By interrelating six different neuroimaging modalities and cognitive measurements, this model accurately predicts spatiotemporal alterations in brain amyloid-β (Aβ) burden, glucose metabolism, vascular flow, resting state functional activity, structural properties, and cognitive integrity. The results suggest that a vascular dysregulation may be the most-likely initial pathologic event leading to LOAD. Nevertheless, they also suggest that LOAD it is not caused by a unique dominant biological factor (e.g. vascular or Aβ) but by the complex interplay among multiple relevant direct interactions. Furthermore, using theoretical control analysis of the identified population-based multifactorial causal network, we show the crucial advantage of using combinatorial over single-target treatments, explain why one-target Aβ based therapies might fail to improve clinical outcomes, and propose an efficiency ranking of possible LOAD interventions. Although still requiring further validation at the individual level, this work presents the first analytic framework for dynamic multifactorial brain (dis)organization that may explain both the pathologic evolution of progressive neurological disorders and operationalize the influence of multiple interventional strategies.

摘要

针对大脑疾病中多因素因果机制的生成模型较为稀缺,且通常基于有限的数据。尽管这些多重相互作用的过程具有重要的生物学意义,但从综合分析的角度来看,它们的影响仍未得到充分描述。在这里,我们提出了一种基于时空的大脑(失调)组织和治疗干预的多因素因果模型(MCM),该模型考虑了局部因果相互作用、通过物理大脑网络的效应传播、认知改变以及识别最佳治疗干预措施。在本文中,我们重点描述了该模型,并将其应用于基于人群的水平,以研究迟发性阿尔茨海默病(LOAD)。通过将六种不同的神经影像学模态和认知测量相互关联,该模型准确地预测了大脑淀粉样蛋白-β(Aβ)负担、葡萄糖代谢、血管流量、静息状态功能活动、结构特性和认知完整性的时空变化。结果表明,血管失调可能是导致 LOAD 的最可能的初始病理事件。然而,它们也表明,LOAD 不是由单一主导的生物学因素(如血管或 Aβ)引起的,而是由多个相关直接相互作用的复杂相互作用引起的。此外,通过对基于人群的多因素因果网络进行理论控制分析,我们展示了使用组合治疗而非单一靶点治疗的关键优势,解释了为什么基于单一靶点的 Aβ治疗可能无法改善临床结果,并提出了可能的 LOAD 干预措施的效率排名。尽管在个体水平上仍需要进一步验证,但这项工作提出了用于动态多因素大脑(失调)组织的第一个分析框架,该框架可能解释进行性神经疾病的病理演变,并使多种干预策略的影响得以实现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验