Suppr超能文献

自闭症两个基因重复小鼠模型中脊柱形成或修剪的明显缺陷。

Distinct Defects in Spine Formation or Pruning in Two Gene Duplication Mouse Models of Autism.

作者信息

Wang Miao, Li Huiping, Takumi Toru, Qiu Zilong, Xu Xiu, Yu Xiang, Bian Wen-Jie

机构信息

Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Neurosci Bull. 2017 Apr;33(2):143-152. doi: 10.1007/s12264-017-0111-8. Epub 2017 Mar 3.

Abstract

Autism spectrum disorder (ASD) encompasses a complex set of developmental neurological disorders, characterized by deficits in social communication and excessive repetitive behaviors. In recent years, ASD is increasingly being considered as a disease of the synapse. One main type of genetic aberration leading to ASD is gene duplication, and several mouse models have been generated mimicking these mutations. Here, we studied the effects of MECP2 duplication and human chromosome 15q11-13 duplication on synaptic development and neural circuit wiring in the mouse sensory cortices. We showed that mice carrying MECP2 duplication had specific defects in spine pruning, while the 15q11-13 duplication mouse model had impaired spine formation. Our results demonstrate that spine pathology varies significantly between autism models and that distinct aspects of neural circuit development may be targeted in different ASD mutations. Our results further underscore the importance of gene dosage in normal development and function of the brain.

摘要

自闭症谱系障碍(ASD)包含一系列复杂的发育性神经障碍,其特征为社交沟通缺陷和过度重复行为。近年来,ASD越来越被视为一种突触疾病。导致ASD的一种主要遗传畸变类型是基因重复,并且已经构建了几种模拟这些突变的小鼠模型。在此,我们研究了MECP2重复和人类染色体15q11 - 13重复对小鼠感觉皮层突触发育和神经回路布线的影响。我们发现携带MECP2重复的小鼠在棘突修剪方面存在特定缺陷,而15q11 - 13重复小鼠模型的棘突形成受损。我们的结果表明,自闭症模型之间的棘突病理学差异显著,并且不同的ASD突变可能针对神经回路发育的不同方面。我们的结果进一步强调了基因剂量在大脑正常发育和功能中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b0/5567529/067fad89882b/12264_2017_111_Fig1_HTML.jpg

相似文献

1
Distinct Defects in Spine Formation or Pruning in Two Gene Duplication Mouse Models of Autism.
Neurosci Bull. 2017 Apr;33(2):143-152. doi: 10.1007/s12264-017-0111-8. Epub 2017 Mar 3.
3
Excessive Formation and Stabilization of Dendritic Spine Clusters in the -Duplication Syndrome Mouse Model of Autism.
eNeuro. 2021 Jan 29;8(1). doi: 10.1523/ENEURO.0282-20.2020. Print 2021 Jan-Feb.
4
Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits.
Neuron. 2014 Sep 3;83(5):1131-43. doi: 10.1016/j.neuron.2014.07.040. Epub 2014 Aug 21.
5
The behavioral phenotype in MECP2 duplication syndrome: a comparison with idiopathic autism.
Autism Res. 2013 Feb;6(1):42-50. doi: 10.1002/aur.1262. Epub 2012 Nov 20.
6
Duplication Causes Aberrant GABA Pathways, Circuits and Behaviors in Transgenic Monkeys: Neural Mappings to Patients with Autism.
J Neurosci. 2020 May 6;40(19):3799-3814. doi: 10.1523/JNEUROSCI.2727-19.2020. Epub 2020 Apr 8.
10
Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2.
Nature. 2016 Feb 4;530(7588):98-102. doi: 10.1038/nature16533. Epub 2016 Jan 25.

引用本文的文献

3
Homeostatic Shrinkage of Dendritic Spines Requires Melatonin Type 3 Receptor Activation During Sleep.
Adv Sci (Weinh). 2024 Oct;11(38):e2400253. doi: 10.1002/advs.202400253. Epub 2024 Aug 9.
4
Unraveling the Endocannabinoid System: Exploring Its Therapeutic Potential in Autism Spectrum Disorder.
Neuromolecular Med. 2024 May 14;26(1):20. doi: 10.1007/s12017-024-08781-6.
5
Remodeling of the postsynaptic proteome in male mice and marmosets during synapse development.
Nat Commun. 2024 Mar 28;15(1):2496. doi: 10.1038/s41467-024-46529-9.
6
The role of glia in the dysregulation of neuronal spinogenesis in Ube3a-dependent ASD.
Exp Neurol. 2024 Jun;376:114756. doi: 10.1016/j.expneurol.2024.114756. Epub 2024 Mar 18.
7
Defects in early synaptic formation and neuronal function in Prader-Willi syndrome.
Sci Rep. 2023 Jul 25;13(1):12053. doi: 10.1038/s41598-023-39065-x.
8
mTOR-Dependent Spine Dynamics in Autism.
Front Mol Neurosci. 2022 Jun 15;15:877609. doi: 10.3389/fnmol.2022.877609. eCollection 2022.
9
Loss of O-GlcNAcylation on MeCP2 at Threonine 203 Leads to Neurodevelopmental Disorders.
Neurosci Bull. 2022 Feb;38(2):113-134. doi: 10.1007/s12264-021-00784-8. Epub 2021 Nov 12.
10
Changes in the Number and Morphology of Dendritic Spines in the Hippocampus and Prefrontal Cortex of the C58/J Mouse Model of Autism.
Front Cell Neurosci. 2021 Sep 20;15:726501. doi: 10.3389/fncel.2021.726501. eCollection 2021.

本文引用的文献

1
Lessons learned from studying syndromic autism spectrum disorders.
Nat Neurosci. 2016 Oct 26;19(11):1408-1417. doi: 10.1038/nn.4420.
2
Excitation/Inhibition Imbalance in Animal Models of Autism Spectrum Disorders.
Biol Psychiatry. 2017 May 15;81(10):838-847. doi: 10.1016/j.biopsych.2016.05.011. Epub 2016 May 20.
3
Parental Origin of Interstitial Duplications at 15q11.2-q13.3 in Schizophrenia and Neurodevelopmental Disorders.
PLoS Genet. 2016 May 6;12(5):e1005993. doi: 10.1371/journal.pgen.1005993. eCollection 2016 May.
4
Advancing the understanding of autism disease mechanisms through genetics.
Nat Med. 2016 Apr;22(4):345-61. doi: 10.1038/nm.4071.
5
Unifying Views of Autism Spectrum Disorders: A Consideration of Autoregulatory Feedback Loops.
Neuron. 2016 Mar 16;89(6):1131-1156. doi: 10.1016/j.neuron.2016.02.017.
6
Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2.
Nature. 2016 Feb 4;530(7588):98-102. doi: 10.1038/nature16533. Epub 2016 Jan 25.
7
Reversal of phenotypes in MECP2 duplication mice using genetic rescue or antisense oligonucleotides.
Nature. 2015 Dec 3;528(7580):123-6. doi: 10.1038/nature16159. Epub 2015 Nov 25.
8
Autism spectrum disorder model mice: Focus on copy number variation and epigenetics.
Sci China Life Sci. 2015 Oct;58(10):976-84. doi: 10.1007/s11427-015-4891-7.
9
Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders.
Neuron. 2015 Aug 19;87(4):684-98. doi: 10.1016/j.neuron.2015.07.033.
10
Coordinated Spine Pruning and Maturation Mediated by Inter-Spine Competition for Cadherin/Catenin Complexes.
Cell. 2015 Aug 13;162(4):808-22. doi: 10.1016/j.cell.2015.07.018. Epub 2015 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验