Miyawaki Shinjiro, Choi Sanghun, Hoffman Eric A, Lin Ching-Long
IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, Iowa 52242.
Biomedical Engineering, The University of Iowa, Iowa City, Iowa 52242; Medicine, The University of Iowa, Iowa City, Iowa 52242; Radiology, The University of Iowa, Iowa City, Iowa 52242.
J Comput Phys. 2016 Dec 1;326:76-90. doi: 10.1016/j.jcp.2016.08.039. Epub 2016 Aug 31.
To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry.
为了再现逼真的气道运动和气流,作者基于四维(4D,空间和时间)动态计算机断层扫描(CT)图像开发了一种变形肺计算流体动力学(CFD)模型。在控制潮气量呼吸过程中总共使用了13个时间点来考虑人类志愿者中真实且不规则的肺运动。由于基于4DCT的气道运动不规则,我们确定了呼吸过程中气道表面变形的最佳插值方法,并实施了基于计算固体力学的移动网格算法以生成平滑变形的气道网格。此外,我们基于多幅图像和单幅图像为两个模型开发了生理逼真的气流边界条件。此外,我们研究了基于一幅或两幅动态或静态图像的简化模型。通过将这些简化模型与基于13幅动态图像的模型进行比较,我们研究了肺结构相对于肺容积、肺变形和成像方法(即动态扫描与静态扫描)的相对滞后对CFD预测压降的影响。由于气流分布和气道几何形状的差异,成像方法对压降的影响为24个百分点。
J Comput Phys. 2016-12-1
J Appl Physiol (1985). 2015-11-15
J Appl Physiol (1985). 2019-5-16
J Comput Phys. 2013-7-1
Int J Radiat Oncol Biol Phys. 2005-11-1
Diagnostics (Basel). 2024-9-7
Int J Numer Method Biomed Eng. 2021-7
J Appl Physiol (1985). 2019-5-16
J Acoust Soc Am. 2018-3
J Acoust Soc Am. 2017-10
J Appl Physiol (1985). 2015-11-15
Ann Biomed Eng. 2014-10
J Comput Phys. 2013-7-1
J Appl Physiol (1985). 2013-6-6