Suppr超能文献

静态成像与动态成像对基于CT的人体中央气道数值模型中颗粒传输的影响。

Effect of static vs. dynamic imaging on particle transport in CT-based numerical models of human central airways.

作者信息

Miyawaki Shinjiro, Hoffman Eric A, Lin Ching-Long

机构信息

IIHR-Hydroscience & Engineering, The University of Iowa, Iowa City, Iowa 52242.

Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa 52242 ; Department of Medicine, The University of Iowa, Iowa City, Iowa 52242 ; Department of Radiology, The University of Iowa, Iowa City, Iowa 52242.

出版信息

J Aerosol Sci. 2016 Oct;100:129-139. doi: 10.1016/j.jaerosci.2016.07.006. Epub 2016 Jul 16.

Abstract

Advances in quantitative computed tomography (CT) has provided methods to assess the detailed structure of the pulmonary airways and parenchyma, providing the means of applying computational fluid dynamics-based modeling to better understand subject-specific differences in structure-to-function relationships. Most of the previous numerical studies, seeking to predict patterns of inhaled particle deposition, have considered airway geometry and regional ventilation derived from static images. Because geometric alterations of the airway and parenchyma associated with regional ventilation may greatly affect particle transport, we have sought to investigate the effect of rigid vs. deforming airways, linear vs. nonlinear airway deformations, and step-wise static vs. dynamic imaging on particle deposition with varying numbers of intermediate lung volume increments. Airway geometry and regional ventilation at different time points were defined by four-dimensional (space and time) dynamic or static CT images. Laminar, transitional, and turbulent air flows were reproduced with a three-dimensional eddy-resolving computational fluid dynamics model. Finally, trajectories of particles were computed with the Lagrangian tracking algorithm. The results demonstrated that static-imaging-based models can contribute 7% uncertainty to overall particle distribution and deposition primarily due to regional flow rate (ventilation) differences as opposed to geometric alterations. The effect of rigid vs. deforming airways on serial distribution of particles over generations was significantly smaller than reported in a previous study that used the symmetric Weibel geometric model with smaller flow rate. Rigid vs. deforming airways were also shown to affect parallel particle distribution over lobes by 8% and the differences associated with use of static vs. dynamic imaging was 18%. These differences demonstrate that estimates derived from static vs. dynamic imaging can significantly affect the assessment of particle distribution heterogeneity. The effect of linear vs. nonlinear airway deformations was within the uncertainty due to mesh size.

摘要

定量计算机断层扫描(CT)技术的进步提供了评估肺气道和实质详细结构的方法,为应用基于计算流体动力学的模型以更好地理解结构与功能关系中的个体差异提供了手段。先前的大多数数值研究旨在预测吸入颗粒的沉积模式,这些研究考虑了从静态图像得出的气道几何形状和区域通气情况。由于与区域通气相关的气道和实质的几何变化可能会极大地影响颗粒传输,因此我们试图研究刚性气道与可变形气道、线性气道变形与非线性气道变形以及逐步静态成像与动态成像对不同中间肺容积增量下颗粒沉积的影响。通过四维(空间和时间)动态或静态CT图像定义不同时间点的气道几何形状和区域通气情况。使用三维涡旋解析计算流体动力学模型再现层流、过渡流和湍流。最后,用拉格朗日跟踪算法计算颗粒轨迹。结果表明,基于静态成像的模型对总体颗粒分布和沉积的不确定性贡献可达7%,这主要是由于区域流速(通气)差异而非几何变化所致。刚性气道与可变形气道对各代颗粒序列分布的影响明显小于先前一项使用较小流速的对称韦贝尔几何模型的研究报告。刚性气道与可变形气道对各叶间颗粒平行分布的影响也达8%,而使用静态成像与动态成像的差异为18%。这些差异表明,静态成像与动态成像得出的估计值会显著影响颗粒分布异质性的评估。线性气道变形与非线性气道变形的影响在网格大小导致的不确定性范围内。

相似文献

6
Differences in Particle Deposition Between Members of Imaging-Based Asthma Clusters.基于影像学的哮喘聚类成员之间的颗粒沉积差异。
J Aerosol Med Pulm Drug Deliv. 2019 Aug;32(4):213-223. doi: 10.1089/jamp.2018.1487. Epub 2019 Mar 19.

引用本文的文献

6
Differences in Particle Deposition Between Members of Imaging-Based Asthma Clusters.基于影像学的哮喘聚类成员之间的颗粒沉积差异。
J Aerosol Med Pulm Drug Deliv. 2019 Aug;32(4):213-223. doi: 10.1089/jamp.2018.1487. Epub 2019 Mar 19.

本文引用的文献

3
Non-uniform central airways ventilation model based on vascular segmentation.基于血管分割的非均匀中央气道通气模型
Comput Biol Med. 2015 Oct 1;65:137-45. doi: 10.1016/j.compbiomed.2015.08.006. Epub 2015 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验