Zhang Yong, Ding Xue
College of Mathematics, Jilin University, Changchun, 130012 P.R. China.
J Inequal Appl. 2017;2017(1):46. doi: 10.1186/s13660-017-1322-2. Epub 2017 Feb 17.
In this article, the complete moment convergence for the partial sum of moving average processes [Formula: see text] is established under some mild conditions, where [Formula: see text] is a doubly infinite sequence of random variables satisfying the Rosenthal type maximal inequality and [Formula: see text] is an absolutely summable sequence of real numbers. These conclusions promote and improve the corresponding results given by Ko (J. Inequal. Appl. 2015:225, 2015).
在本文中,在一些温和条件下建立了移动平均过程[公式:见原文]部分和的完全矩收敛性,其中[公式:见原文]是满足罗森塔尔型极大不等式的双无穷随机变量序列,[公式:见原文]是绝对可和的实数序列。这些结论推广并改进了Ko(《不等式及其应用杂志》2015:225,2015)给出的相应结果。