Suppr超能文献

跨行走模式的人类步态统一参数化

A Unified Parameterization of Human Gait Across Ambulation Modes.

作者信息

Embry Kyle R, Villarreal Dario J, Gregg Robert D

机构信息

Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA.

Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2179-2183. doi: 10.1109/EMBC.2016.7591161.

Abstract

This paper introduces a novel gait parameterization method that models gait kinematics as a continuous function of gait cycle phase, walking speed, and ground slope. Kinematic data was recorded from seven able-bodied subjects walking on a treadmill at twenty-seven combinations of walking speed and ground slope. Convex optimization was used to determine the parameters of a function of three variables that fits this experimental data. This function may be able to provide desired trajectories to a virtual constraint controller over a continuum of gait phases and ambulation modes. This could allow for a single, non-switching controller to control a prosthetic leg for a variety of tasks, avoiding many of the problems associated with the ubiquitous use of finite state machines in prosthesis control.

摘要

本文介绍了一种新颖的步态参数化方法,该方法将步态运动学建模为步态周期阶段、步行速度和地面坡度的连续函数。从七名身体健全的受试者在跑步机上以步行速度和地面坡度的二十七个组合行走时记录运动学数据。使用凸优化来确定拟合该实验数据的三变量函数的参数。该函数或许能够在连续的步态阶段和行走模式上为虚拟约束控制器提供所需轨迹。这可以使单个非切换控制器针对各种任务控制假肢腿,避免了与假肢控制中普遍使用有限状态机相关的许多问题。

相似文献

1
A Unified Parameterization of Human Gait Across Ambulation Modes.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2179-2183. doi: 10.1109/EMBC.2016.7591161.
2
Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
J Neuroeng Rehabil. 2021 Feb 5;18(1):27. doi: 10.1186/s12984-021-00825-3.
3
Modeling the Kinematics of Human Locomotion Over Continuously Varying Speeds and Inclines.
IEEE Trans Neural Syst Rehabil Eng. 2018 Dec;26(12):2342-2350. doi: 10.1109/TNSRE.2018.2879570. Epub 2018 Nov 5.
4
Lower limb sagittal kinematic and kinetic modeling of very slow walking for gait trajectory scaling.
PLoS One. 2018 Sep 17;13(9):e0203934. doi: 10.1371/journal.pone.0203934. eCollection 2018.
5
Analysis of Continuously Varying Kinematics for Prosthetic Leg Control Applications.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:262-272. doi: 10.1109/TNSRE.2020.3045003. Epub 2021 Mar 1.
6
Modeling and Individualizing Continuous Joint Kinematics Using Gaussian Process Enhanced Fourier Series.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:779-788. doi: 10.1109/TNSRE.2022.3223992. Epub 2023 Feb 2.
7
Virtual prototyping of a semi-active transfemoral prosthetic leg.
Proc Inst Mech Eng H. 2015 May;229(5):350-61. doi: 10.1177/0954411915581653.
8
On the mechanics of functional asymmetry in bipedal walking.
IEEE Trans Biomed Eng. 2012 May;59(5):1310-8. doi: 10.1109/TBME.2012.2186808. Epub 2012 Feb 7.
9
Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking.
Gait Posture. 2015 Jul;42(2):145-51. doi: 10.1016/j.gaitpost.2015.05.002. Epub 2015 May 14.
10
Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms.
Clin Biomech (Bristol). 2018 Jun;55:65-72. doi: 10.1016/j.clinbiomech.2018.04.007. Epub 2018 Apr 12.

引用本文的文献

1
An Individual Prosthesis Control Method with Human Subjective Choices.
Biomimetics (Basel). 2024 Jan 27;9(2):77. doi: 10.3390/biomimetics9020077.
3
Analysis of Continuously Varying Kinematics for Prosthetic Leg Control Applications.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:262-272. doi: 10.1109/TNSRE.2020.3045003. Epub 2021 Mar 1.
4
Design and Validation of a Powered Knee-Ankle Prosthesis with High-Torque, Low-Impedance Actuators.
IEEE Trans Robot. 2020 Dec;36(6):1649-1668. doi: 10.1109/TRO.2020.3005533. Epub 2020 Jul 13.
5
A Phase Variable Approach to Volitional Control of Powered Knee-Ankle Prostheses.
Rep U S. 2018 Oct;2018:2292-2298. doi: 10.1109/IROS.2018.8594023. Epub 2019 Jan 7.
6
Design and Benchtop Validation of a Powered Knee-Ankle Prosthesis with High-Torque, Low-Impedance Actuators.
IEEE Int Conf Robot Autom. 2018 May;2018:2788-2795. doi: 10.1109/ICRA.2018.8461259. Epub 2018 Sep 13.
7
Modeling the Kinematics of Human Locomotion Over Continuously Varying Speeds and Inclines.
IEEE Trans Neural Syst Rehabil Eng. 2018 Dec;26(12):2342-2350. doi: 10.1109/TNSRE.2018.2879570. Epub 2018 Nov 5.
8
Continuous-Phase Control of a Powered Knee-Ankle Prosthesis: Amputee Experiments Across Speeds and Inclines.
IEEE Trans Robot. 2018 Jun;34(3):686-701. doi: 10.1109/TRO.2018.2794536. Epub 2018 Feb 27.
9
Toward Unified Control of a Powered Prosthetic Leg: A Simulation Study.
IEEE Trans Control Syst Technol. 2018 Jan;26(1):305-312. doi: 10.1109/TCST.2016.2643566. Epub 2017 Jan 16.
10
Piecewise and unified phase variables in the control of a powered prosthetic leg.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:1425-1430. doi: 10.1109/ICORR.2017.8009448.

本文引用的文献

1
Preliminary Experiments with a Unified Controller for a Powered Knee-Ankle Prosthetic Leg Across Walking Speeds.
Rep U S. 2016 Oct;2016:5427-5433. doi: 10.1109/IROS.2016.7759798. Epub 2016 Dec 1.
2
A Robust Parameterization of Human Gait Patterns Across Phase-Shifting Perturbations.
IEEE Trans Neural Syst Rehabil Eng. 2017 Mar;25(3):265-278. doi: 10.1109/TNSRE.2016.2569019. Epub 2016 May 13.
3
Unifying the Gait Cycle in the Control of a Powered Prosthetic Leg.
IEEE Int Conf Rehabil Robot. 2015 Aug;2015:289-294. doi: 10.1109/ICORR.2015.7281214.
5
Control strategies for active lower extremity prosthetics and orthotics: a review.
J Neuroeng Rehabil. 2015 Jan 5;12(1):1. doi: 10.1186/1743-0003-12-1.
6
Running with a powered knee and ankle prosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2015 May;23(3):403-12. doi: 10.1109/TNSRE.2014.2336597. Epub 2014 Jul 9.
7
Configuring a powered knee and ankle prosthesis for transfemoral amputees within five specific ambulation modes.
PLoS One. 2014 Jun 10;9(6):e99387. doi: 10.1371/journal.pone.0099387. eCollection 2014.
8
Strategies to reduce the configuration time for a powered knee and ankle prosthesis across multiple ambulation modes.
IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650371. doi: 10.1109/ICORR.2013.6650371.
9
Intent recognition in a powered lower limb prosthesis using time history information.
Ann Biomed Eng. 2014 Mar;42(3):631-41. doi: 10.1007/s10439-013-0909-0. Epub 2013 Sep 20.
10
Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons.
Med Eng Phys. 2012 May;34(4):397-408. doi: 10.1016/j.medengphy.2011.11.018. Epub 2011 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验