IEEE Trans Neural Syst Rehabil Eng. 2018 Dec;26(12):2342-2350. doi: 10.1109/TNSRE.2018.2879570. Epub 2018 Nov 5.
Powered knee and ankle prostheses can perform a limited number of discrete ambulation tasks. This is largely due to their control architecture, which uses a finite-state machine to select among a set of task-specific controllers. A non-switching controller that supports a continuum of tasks is expected to better facilitate normative biomechanics. This paper introduces a predictive model that represents gait kinematics as a continuous function of gait cycle percentage, speed, and incline. The basis model consists of two parts: basis functions that produce kinematic trajectories over the gait cycle and task functions that smoothly alter the weight of basis functions in response to task. Kinematic data from 10 able-bodied subjects walking at 27 combinations of speed and incline generate training and validation data for this data-driven model. Convex optimization accurately fits the model to experimental data. Automated model order reduction improves predictive abilities by capturing only the most important kinematic changes due to walking tasks. Constraints on a range of motion and jerk ensure the safety and comfort of the user. This model produces a smooth continuum of trajectories over task, an impossibility for finite-state control algorithms. Random sub-sampling validation indicates that basis modeling predicts untrained kinematics more accurately than linear interpolation.
动力膝关节和踝关节假肢可以执行有限数量的离散步行任务。这在很大程度上是由于它们的控制架构,该架构使用有限状态机从一组特定于任务的控制器中进行选择。预计支持连续任务的非开关控制器将更好地促进正常的生物力学。本文介绍了一种预测模型,该模型将步态运动学表示为步态周期百分比、速度和坡度的连续函数。基础模型由两部分组成:产生步态周期内运动学轨迹的基函数和根据任务平滑改变基函数权重的任务函数。10 名健康受试者以 27 种速度和坡度组合行走时的运动学数据为该数据驱动模型生成了训练和验证数据。凸优化可以准确地将模型拟合到实验数据中。自动模型降阶通过仅捕获由于行走任务而导致的最重要的运动学变化来提高预测能力。运动范围和急动度的约束确保了用户的安全和舒适。与有限状态控制算法相比,该模型在任务中产生了平滑的连续运动轨迹,这是不可能的。随机子采样验证表明,基模型比线性插值更准确地预测未经训练的运动学。