Huang Yongshan, An Honglei, Ma Hongxu, Wei Qing
IEEE Trans Neural Syst Rehabil Eng. 2023;31:779-788. doi: 10.1109/TNSRE.2022.3223992. Epub 2023 Feb 2.
Prosthetic discrete controller relies on finite state machines to switch between a set of predefined task-specific controllers. Therefore the prosthesis can only perform a limited number of discrete locomotion tasks and need hours to tune the parameters for each user. In contrast, the continuous controller treats a gait cycle in a unified way. Thus it is expected to better facilitate normative biomechanics by providing a gait predictive model to contribute a non-switching controller that supports a continuum of tasks. Furthermore, a better method is to train a personalized trajectory prediction model suitable for personal characteristics according to personal walking data. This paper proposes a Gaussian process enhanced Fourier series (GPEFS) method to construct a gait prediction model that represents the human locomotion as a continuous function of phase, speed and slope. Firstly the joint trajectories are transformed into the Fourier coefficient space by least square method. Then the relationship between each Fourier coefficient and task input can be learned by multiple Gaussian process regression (GPRs) model respectively. Compared with directly using GPR to fit the joint trajectory under multi task, our method greatly reduces the computational burden, so as to meet the real-time application scenario. In addition, in Fourier coefficient space, the difference in all tasks between the Fourier coefficient of personal data and the one of statistical data follows the same trend. Therefore, a personalized prediction model is built to predict an individual's kinematics over a continuous range of slopes and speeds given only one personalized task at level ground and normal speed. The experimental results show that the gait prediction model and the personalized prediction model are feasible and effective.
假肢离散控制器依靠有限状态机在一组预定义的特定任务控制器之间进行切换。因此,假肢只能执行有限数量的离散运动任务,并且需要数小时为每个用户调整参数。相比之下,连续控制器以统一的方式处理步态周期。因此,通过提供步态预测模型以贡献一个支持连续任务的非切换控制器,有望更好地促进规范生物力学。此外,一种更好的方法是根据个人行走数据训练适合个人特征的个性化轨迹预测模型。本文提出了一种高斯过程增强傅里叶级数(GPEFS)方法来构建步态预测模型,该模型将人体运动表示为相位、速度和坡度的连续函数。首先,通过最小二乘法将关节轨迹转换到傅里叶系数空间。然后,分别通过多个高斯过程回归(GPR)模型学习每个傅里叶系数与任务输入之间的关系。与在多任务下直接使用GPR拟合关节轨迹相比,我们的方法大大减轻了计算负担,从而满足实时应用场景。此外,在傅里叶系数空间中,个人数据的傅里叶系数与统计数据的傅里叶系数在所有任务之间的差异遵循相同趋势。因此,仅根据在平地和正常速度下的一个个性化任务,构建个性化预测模型以预测个体在连续坡度和速度范围内的运动学。实验结果表明,步态预测模型和个性化预测模型是可行且有效的。