Servei de Física Mèdica i Protecció radiològica, Institut Català d'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain.
Department of Oncology Physics, Edinburgh Cancer Centre, Western General Hospital, Edinburgh, Scotland.
Med Phys. 2017 May;44(5):1930-1938. doi: 10.1002/mp.12189. Epub 2017 Apr 13.
The primary aim of this study was to determine correction factors, kQclin,Qmsrfclin,fmsr for a PTW-31016 ionization chamber on field sizes from 0.5 cm × 0.5 cm to 2 cm × 2 cm for both flattened (FF) and flattened filter-free (FFF) beams produced in a TrueBeam clinical accelerator. The secondary objective was the determination of field output factors, ΩQclin,Qmsrfclin,fmsr over this range of field sizes using both Monte Carlo (MC) simulation and measurements.
kQclin,Qmsrfclin,fmsr for the PTW-31016 chamber were calculated by MC simulation for field sizes of 0.5 cm × 0.5 cm, 1 cm × 1 cm, and 2 cm × 2 cm. MC simulations were performed with the PENELOPE code system for the 10 MV FFF Particle Space File from a TrueBeam linear accelerator (LINAC) provided by the manufacturer (Varian Medical Systems, Inc. Palo Alto, CA, USA). Simulations were repeated taking into account chamber manufacturing tolerances and accelerator jaw positioning in order to assess the uncertainty of the calculated correction factors. Output ratios were measured on square fields ranging from 0.5 cm × 0.5 cm to 10 cm × 10 cm for 6 MV and 10 MV FF and FFF beams produced by a TrueBeam using a PTW-31016 ionization chamber; a Sun Nuclear Edge detector (SunNuclear Corp., Melbourne, FL, USA) and TLD-700R (Harshaw, Thermo Scientific, Waltham, MA, USA). The validity of the proposed correction factors was verified using the calculated correction factors for the determination of ΩQclin,Qmsrfclin,fmsr using a PTW-31016 at the four TrueBeam energies and comparing the results with both TLD-700R measurements and MC simulations. Finally, the proposed correction factors were used to assess the correction factors of the SunNuclear Edge detector.
The present work provides a set of MC calculated correction factors for a PTW-31016 chamber used on a TrueBeam FF and FFF mode. For the 0.5 cm × 0.5 cm square field size, kQclin,Qmsrfclin,fmsr is equal to 1.17 with a combined uncertainty of 2% (k = 1). A detailed analysis of the most influential parameters is presented in this work. PTW-31016 corrected measurements were used for the determination of ΩQclin,Qmsrfclin,fmsr for 6 MV and 10 MV FF and FFF and the results were in agreement with values obtained using a TLD-700R detector (differences < 3% for a 0.5 cm square field) for the four energies studied. Uncertainty in field collimation was found to be the main source of influence of ΩQclin,Qmsrfclin,fmsr and caused differences of up to 15% between calculations and measurements for the 0.5 cm × 0.5 cm field. This was also confirmed by repeating the same measurements at two different institutions.
This study confirms the need to introduce correction factors when using a PTW-31016 chamber and the hypothesis of their low energy dependence. MC simulation has been shown to be a useful methodology to determine detector correction factors for small fields and to analyze the main sources of uncertainty. However, due to the influence of the LINAC jaw setup for field sizes below or equal to 1 cm, MC methods are not recommended in this range for field output factor calculations.
本研究的主要目的是确定在 TrueBeam 临床加速器中产生的平坦化(FF)和无平坦化滤波器(FFF)射束的从 0.5cm×0.5cm 至 2cm×2cm 的各种射野大小下,PTW-31016 电离室的校正因子 kQclin,Qmsrfclin,fmsr。次要目标是使用蒙特卡罗(MC)模拟和测量来确定在此范围内的射野输出因子 ΩQclin,Qmsrfclin,fmsr。
通过 MC 模拟计算了 0.5cm×0.5cm、1cm×1cm 和 2cm×2cm 射野大小下的 PTW-31016 腔室的 kQclin,Qmsrfclin,fmsr。使用制造商(Varian Medical Systems,Inc.,Palo Alto,CA,USA)提供的 TrueBeam 10MVFFF Particle Space File 用 PENELOPE 代码系统进行了 MC 模拟。为了评估计算校正因子的不确定性,重复了考虑腔室制造公差和加速器机架定位的模拟。使用 TrueBeam 产生的 6MV 和 10MV FF 和 FFF 射束在从 0.5cm×0.5cm 至 10cm×10cm 的方形射野上测量了 PTW-31016 电离室的输出比;SunNuclear Edge 探测器(SunNuclear Corp.,Melbourne,FL,USA)和 TLD-700R(Harshaw,Thermo Scientific,Waltham,MA,USA)。使用在四个 TrueBeam 能量下的 PTW-31016 计算校正因子确定 ΩQclin,Qmsrfclin,fmsr,并将结果与 TLD-700R 测量和 MC 模拟进行比较,验证了所提出的校正因子的有效性。最后,使用提出的校正因子来评估 SunNuclear Edge 探测器的校正因子。
本工作提供了用于 TrueBeam FF 和 FFF 模式的 PTW-31016 腔室的一组 MC 计算校正因子。对于 0.5cm×0.5cm 的方形射野,kQclin,Qmsrfclin,fmsr 等于 1.17,其总不确定度为 2%(k=1)。本工作详细分析了最具影响力的参数。使用 PTW-31016 校正测量值来确定 6MV 和 10MV FF 和 FFF 的 ΩQclin,Qmsrfclin,fmsr,结果与使用 TLD-700R 探测器(对于四个研究的能量,差异<3%对于 0.5cm 方形射野)获得的值一致。研究发现,射野准直的不确定性是影响 ΩQclin,Qmsrfclin,fmsr 的主要因素,对于 0.5cm×0.5cm 射野,计算值与测量值之间的差异可达 15%。在两个不同的机构重复进行相同的测量也证实了这一点。
本研究证实了在使用 PTW-31016 腔室时需要引入校正因子的假设,并验证了其对低能量的依赖性。MC 模拟已被证明是一种有用的方法,可以确定小射野的探测器校正因子,并分析主要的不确定性来源。然而,由于 LINAC 机架设置对小于或等于 1cm 的射野大小的影响,在这个范围内不建议使用 MC 方法进行射野输出因子的计算。