Suppr超能文献

Param-Medic:一种通过优化参数设置提高串联质谱数据库搜索效率的工具。

Param-Medic: A Tool for Improving MS/MS Database Search Yield by Optimizing Parameter Settings.

作者信息

May Damon H, Tamura Kaipo, Noble William S

机构信息

Department of Genome Sciences, University of Washington , Seattle, Washington 98195, United States.

Department of Computer Science and Engineering, University of Washington , Seattle, Washington 98195, United States.

出版信息

J Proteome Res. 2017 Apr 7;16(4):1817-1824. doi: 10.1021/acs.jproteome.7b00028. Epub 2017 Mar 13.

Abstract

In shotgun proteomics analysis, user-specified parameters are critical to database search performance and therefore to the yield of confident peptide-spectrum matches (PSMs). Two of the most important parameters are related to the accuracy of the mass spectrometer. Precursor mass tolerance defines the peptide candidates considered for each spectrum. Fragment mass tolerance or bin size determines how close observed and theoretical fragments must be to be considered a match. For either of these two parameters, too wide a setting yields randomly high-scoring false PSMs, whereas too narrow a setting erroneously excludes true PSMs, in both cases, lowering the yield of peptides detected at a given false discovery rate. We describe a strategy for inferring optimal search parameters by assembling and analyzing pairs of spectra that are likely to have been generated by the same peptide ion to infer precursor and fragment mass error. This strategy does not rely on a database search, making it usable in a wide variety of settings. In our experiments on data from a variety of instruments including Orbitrap and Q-TOF acquisitions, this strategy yields more high-confidence PSMs than using settings based on instrument defaults or determined by experts. Param-Medic is open-source and cross-platform. It is available as a standalone tool ( http://noble.gs.washington.edu/proj/param-medic/ ) and has been integrated into the Crux proteomics toolkit ( http://crux.ms ), providing automatic parameter selection for the Comet and Tide search engines.

摘要

在鸟枪法蛋白质组学分析中,用户指定的参数对于数据库搜索性能至关重要,因此对于可靠的肽段谱匹配(PSM)产量也至关重要。其中两个最重要的参数与质谱仪的准确性相关。前体质量容差定义了针对每个谱考虑的肽候选物。碎片质量容差或区间大小决定了观察到的和理论上的碎片必须有多接近才能被视为匹配。对于这两个参数中的任何一个,设置过宽会产生随机高分的错误PSM,而设置过窄会错误地排除真正的PSM,在这两种情况下,都会降低在给定错误发现率下检测到的肽段产量。我们描述了一种通过组装和分析可能由同一肽离子产生的谱对来推断最佳搜索参数的策略,以推断前体和碎片质量误差。该策略不依赖于数据库搜索,使其可在多种设置中使用。在我们对来自包括Orbitrap和Q-TOF采集在内的各种仪器的数据进行的实验中,该策略比使用基于仪器默认设置或由专家确定的设置产生更多高可信度的PSM。Param-Medic是开源且跨平台的。它可作为独立工具(http://noble.gs.washington.edu/proj/param-medic/)获得,并已集成到Crux蛋白质组学工具包(http://crux.ms)中,为Comet和Tide搜索引擎提供自动参数选择。

相似文献

1
Param-Medic: A Tool for Improving MS/MS Database Search Yield by Optimizing Parameter Settings.
J Proteome Res. 2017 Apr 7;16(4):1817-1824. doi: 10.1021/acs.jproteome.7b00028. Epub 2017 Mar 13.
2
The Crux Toolkit for Analysis of Bottom-Up Tandem Mass Spectrometry Proteomics Data.
J Proteome Res. 2023 Feb 3;22(2):561-569. doi: 10.1021/acs.jproteome.2c00615. Epub 2023 Jan 4.
3
Comparative database search engine analysis on massive tandem mass spectra of pork-based food products for halal proteomics.
J Proteomics. 2021 Jun 15;241:104240. doi: 10.1016/j.jprot.2021.104240. Epub 2021 Apr 21.
4
Search and decoy: the automatic identification of mass spectra.
Methods Mol Biol. 2012;893:445-88. doi: 10.1007/978-1-61779-885-6_28.
5
In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics.
J Proteomics. 2017 Jan 6;150:170-182. doi: 10.1016/j.jprot.2016.08.002. Epub 2016 Aug 4.
6
Detecting Modifications in Proteomics Experiments with Param-Medic.
J Proteome Res. 2019 Apr 5;18(4):1902-1906. doi: 10.1021/acs.jproteome.8b00954. Epub 2019 Mar 5.
7
8
MSblender: A probabilistic approach for integrating peptide identifications from multiple database search engines.
J Proteome Res. 2011 Jul 1;10(7):2949-58. doi: 10.1021/pr2002116. Epub 2011 Apr 29.
9
Data-Dependent Scoring Parameter Optimization in MS-GF+ Using Spectrum Quality Filter.
J Proteome Res. 2018 Oct 5;17(10):3593-3598. doi: 10.1021/acs.jproteome.8b00415. Epub 2018 Jul 26.
10
Optimization of Search Engines and Postprocessing Approaches to Maximize Peptide and Protein Identification for High-Resolution Mass Data.
J Proteome Res. 2015 Nov 6;14(11):4662-73. doi: 10.1021/acs.jproteome.5b00536. Epub 2015 Sep 30.

引用本文的文献

1
Identification of Proteoforms Related to Flower Petaloid Through Proteogenomic Strategy.
Proteomes. 2025 Jan 15;13(1):4. doi: 10.3390/proteomes13010004.
3
The Crux Toolkit for Analysis of Bottom-Up Tandem Mass Spectrometry Proteomics Data.
J Proteome Res. 2023 Feb 3;22(2):561-569. doi: 10.1021/acs.jproteome.2c00615. Epub 2023 Jan 4.
4
Improving Peptide-Level Mass Spectrometry Analysis via Double Competition.
J Proteome Res. 2022 Oct 7;21(10):2412-2420. doi: 10.1021/acs.jproteome.2c00282. Epub 2022 Sep 27.
5
Improving the Genome Annotation of Using Proteogenomics.
Curr Genomics. 2021 Dec 30;22(5):373-383. doi: 10.2174/1389202922666211011143957.
6
Accurately Assigning Peptides to Spectra When Only a Subset of Peptides Are Relevant.
J Proteome Res. 2021 Aug 6;20(8):4153-4164. doi: 10.1021/acs.jproteome.1c00483. Epub 2021 Jul 8.
7
mokapot: Fast and Flexible Semisupervised Learning for Peptide Detection.
J Proteome Res. 2021 Apr 2;20(4):1966-1971. doi: 10.1021/acs.jproteome.0c01010. Epub 2021 Feb 17.
8
Bioinformatics Methods for Mass Spectrometry-Based Proteomics Data Analysis.
Int J Mol Sci. 2020 Apr 20;21(8):2873. doi: 10.3390/ijms21082873.
9
More Accurate Transcript Assembly via Parameter Advising.
J Comput Biol. 2020 Aug;27(8):1181-1189. doi: 10.1089/cmb.2019.0286. Epub 2020 Apr 21.
10
Machine Learning Strategy That Leverages Large Data sets to Boost Statistical Power in Small-Scale Experiments.
J Proteome Res. 2020 Mar 6;19(3):1267-1274. doi: 10.1021/acs.jproteome.9b00780. Epub 2020 Feb 17.

本文引用的文献

1
In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics.
J Proteomics. 2017 Jan 6;150:170-182. doi: 10.1016/j.jprot.2016.08.002. Epub 2016 Aug 4.
2
An Alignment-Free "Metapeptide" Strategy for Metaproteomic Characterization of Microbiome Samples Using Shotgun Metagenomic Sequencing.
J Proteome Res. 2016 Aug 5;15(8):2697-705. doi: 10.1021/acs.jproteome.6b00239. Epub 2016 Jul 19.
4
Cleaning out the Litterbox of Proteomic Scientists' Favorite Pet: Optimized Data Analysis Avoiding Trypsin Artifacts.
J Proteome Res. 2016 Apr 1;15(4):1222-9. doi: 10.1021/acs.jproteome.5b01105. Epub 2016 Mar 22.
5
Redefining the Breast Cancer Exosome Proteome by Tandem Mass Tag Quantitative Proteomics and Multivariate Cluster Analysis.
Anal Chem. 2015 Oct 20;87(20):10462-9. doi: 10.1021/acs.analchem.5b02586. Epub 2015 Sep 29.
6
A human gut metaproteomic dataset from stool samples pretreated or not by differential centrifugation.
Data Brief. 2015 Jul 26;4:559-62. doi: 10.1016/j.dib.2015.07.014. eCollection 2015 Sep.
7
ISG15 counteracts Listeria monocytogenes infection.
Elife. 2015 Aug 11;4:e06848. doi: 10.7554/eLife.06848.
8
PIA: An Intuitive Protein Inference Engine with a Web-Based User Interface.
J Proteome Res. 2015 Jul 2;14(7):2988-97. doi: 10.1021/acs.jproteome.5b00121. Epub 2015 Jun 10.
9
A draft map of the human proteome.
Nature. 2014 May 29;509(7502):575-81. doi: 10.1038/nature13302.
10
An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database.
J Am Soc Mass Spectrom. 1994 Nov;5(11):976-89. doi: 10.1016/1044-0305(94)80016-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验