Suppr超能文献

相似文献

1
Effect of overall phenotypic selection on genetic change at individual loci.
Proc Natl Acad Sci U S A. 1978 Dec;75(12):6168-71. doi: 10.1073/pnas.75.12.6168.
3
The Rate of Change of a Character Correlated with Fitness.
Am Nat. 1976;110(972):207-213. doi: 10.1086/283060.
4
Efficiency of truncation selection.
Proc Natl Acad Sci U S A. 1979 Jan;76(1):396-9. doi: 10.1073/pnas.76.1.396.
6
Error bounds for the fundamental and secondary theorems of natural selection.
Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2402-6. doi: 10.1073/pnas.88.6.2402.
7
Rate of evolution of a character without epistasis.
Proc Natl Acad Sci U S A. 1989 Mar;86(6):1910-3. doi: 10.1073/pnas.86.6.1910.
9
A simulation study of truncation selection for a quantitative trait opposed by natural selection.
Genetics. 1980 Apr;94(4):989-1000. doi: 10.1093/genetics/94.4.989.
10
Consequences of stabilising selection for polygenic variation.
Heredity (Edinb). 1987 Apr;58 ( Pt 2):267-77. doi: 10.1038/hdy.1987.41.

引用本文的文献

1
Mutation-selection-drift balance models of complex diseases.
bioRxiv. 2025 May 18:2025.05.18.654722. doi: 10.1101/2025.05.18.654722.
2
Plasticity and environment-specific relationships between gene expression and fitness in Saccharomyces cerevisiae.
Nat Ecol Evol. 2024 Dec;8(12):2184-2194. doi: 10.1038/s41559-024-02582-7. Epub 2024 Nov 13.
3
Plasticity and environment-specific relationships between gene expression and fitness in .
bioRxiv. 2024 Apr 15:2024.04.12.589130. doi: 10.1101/2024.04.12.589130.
4
Heterogeneity of the GFP fitness landscape and data-driven protein design.
Elife. 2022 May 5;11:e75842. doi: 10.7554/eLife.75842.
7
An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape.
PLoS Genet. 2019 Apr 10;15(4):e1008079. doi: 10.1371/journal.pgen.1008079. eCollection 2019 Apr.
8
Selection for Protein Stability Enriches for Epistatic Interactions.
Genes (Basel). 2018 Aug 21;9(9):423. doi: 10.3390/genes9090423.
9
Inferring the shape of global epistasis.
Proc Natl Acad Sci U S A. 2018 Aug 7;115(32):E7550-E7558. doi: 10.1073/pnas.1804015115. Epub 2018 Jul 23.
10
What drives the evolution of condition-dependent recombination in diploids? Some insights from simulation modelling.
Philos Trans R Soc Lond B Biol Sci. 2017 Dec 19;372(1736). doi: 10.1098/rstb.2016.0460.

本文引用的文献

1
Rank-order selection is capable of maintaining all genetic polymorphisms.
Genetics. 1978 Jun;89(2):403-17. doi: 10.1093/genetics/89.2.403.
2
Selection differentials and selection coefficients.
Genetics. 1978 Feb;88(2):391-403. doi: 10.1093/genetics/88.2.391.
3
Heterosis as a major cause of heterozygosity in nature.
Genetics. 1967 Mar;55(3):493-5. doi: 10.1093/genetics/55.3.493.
4
Continuously distributed factors affecting fitness.
Genetics. 1967 Mar;55(3):483-92. doi: 10.1093/genetics/55.3.483.
5
The number of balanced polymorphisms that can be maintained in a natural population.
Genetics. 1967 Mar;55(3):469-81. doi: 10.1093/genetics/55.3.469.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验