Department of Chemistry and ‡Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States.
Biomacromolecules. 2017 Apr 10;18(4):1434-1439. doi: 10.1021/acs.biomac.7b00249. Epub 2017 Mar 17.
There has been growing interest in producing stable, biocompatible nanocarriers for the controlled delivery of therapeutics. With micelles, it remains a challenge to predict a priori the size, aggregation number, and functionality of the self-assembled aggregates. Utilizing controlled radical polymerization techniques, we have prepared tunable high molecular weight amphiphilic comb copolymers that self-assemble into unimolecular "micelle-like" nanocarriers of predictable size and functionality. Excellent control over self-assembly behavior and structure allows for systematic determination of the role of important polymeric material properties (i.e., glass transition) on the release of model therapeutics while simultaneously controlling for size, dispersity, structural, and functionality effects. Moreover, these single-chain polymeric nanocarriers represent a class of drug delivery systems allowing for interrogation of the limitations of standard methods for characterization of micellar aggregates.
人们越来越感兴趣的是生产稳定的、生物相容的纳米载体,以实现治疗药物的控制释放。对于胶束而言,预先预测自组装聚集体的大小、聚集数和功能仍然是一个挑战。我们利用可控自由基聚合技术,制备了可调节的高分子量两亲梳状嵌段共聚物,这些共聚物可以自组装成具有可预测尺寸和功能的单分子“胶束样”纳米载体。对自组装行为和结构的优异控制允许系统地确定重要聚合物材料性质(即玻璃化转变)对模型治疗药物释放的作用,同时控制尺寸、分散性、结构和功能的影响。此外,这些单链聚合物纳米载体代表了一类药物输送系统,允许对胶束聚集物的标准特性描述方法的局限性进行研究。
Macromol Rapid Commun. 2011-6-14
J Control Release. 2010-3-6
J Control Release. 2014-7-15
Colloid Interface Sci Commun. 2021-7
Macromolecules. 2020-10-13
Macromolecules. 2019-2-12