Suppr超能文献

基于轻量化注意力机制的卷积神经网络模型在可穿戴式 IMU 传感器高效步态识别中的应用

A Lightweight Attention-Based CNN Model for Efficient Gait Recognition with Wearable IMU Sensors.

机构信息

Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Sensors (Basel). 2021 Apr 19;21(8):2866. doi: 10.3390/s21082866.

Abstract

Wearable sensors-based gait recognition is an effective method to recognize people's identity by recognizing the unique way they walk. Recently, the adoption of deep learning networks for gait recognition has achieved significant performance improvement and become a new promising trend. However, most of the existing studies mainly focused on improving the gait recognition accuracy while ignored model complexity, which make them unsuitable for wearable devices. In this study, we proposed a lightweight attention-based Convolutional Neural Networks (CNN) model for wearable gait recognition. Specifically, a four-layer lightweight CNN was first employed to extract gait features. Then, a novel attention module based on contextual encoding information and depthwise separable convolution was designed and integrated into the lightweight CNN to enhance the extracted gait features and simplify the complexity of the model. Finally, the Softmax classifier was used for classification to realize gait recognition. We conducted comprehensive experiments to evaluate the performance of the proposed model on whuGait and OU-ISIR datasets. The effect of the proposed attention mechanisms, different data segmentation methods, and different attention mechanisms on gait recognition performance were studied and analyzed. The comparison results with the existing similar researches in terms of recognition accuracy and number of model parameters shown that our proposed model not only achieved a higher recognition performance but also reduced the model complexity by 86.5% on average.

摘要

基于可穿戴传感器的步态识别是一种通过识别人们独特的行走方式来识别其身份的有效方法。最近,深度学习网络在步态识别中的应用取得了显著的性能提升,成为一种新的有前途的趋势。然而,大多数现有的研究主要集中在提高步态识别的准确性,而忽略了模型的复杂性,这使得它们不适合可穿戴设备。在本研究中,我们提出了一种用于可穿戴步态识别的轻量级基于注意力的卷积神经网络(CNN)模型。具体来说,首先使用四层轻量级 CNN 来提取步态特征。然后,设计了一种基于上下文编码信息和深度可分离卷积的新注意力模块,并将其集成到轻量级 CNN 中,以增强提取的步态特征并简化模型的复杂性。最后,使用 Softmax 分类器进行分类,以实现步态识别。我们在 whuGait 和 OU-ISIR 数据集上进行了全面的实验,以评估所提出模型的性能。研究和分析了所提出的注意力机制、不同的数据分割方法和不同的注意力机制对步态识别性能的影响。与现有类似研究在识别准确率和模型参数数量方面的比较结果表明,我们提出的模型不仅实现了更高的识别性能,而且平均减少了 86.5%的模型复杂度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e377/8072684/b6e1b0cb8569/sensors-21-02866-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验