文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于穿戴式惯性传感器的 DPF-LSTM-CNN 的新型步态相位识别方法。

A Novel Gait Phase Recognition Method Based on DPF-LSTM-CNN Using Wearable Inertial Sensors.

机构信息

School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.

出版信息

Sensors (Basel). 2023 Jun 26;23(13):5905. doi: 10.3390/s23135905.


DOI:10.3390/s23135905
PMID:37447755
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10347001/
Abstract

Gait phase recognition is of great importance in the development of rehabilitation devices. The advantages of Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) are combined (LSTM-CNN) in this paper, then a gait phase recognition method based on LSTM-CNN neural network model is proposed. In the LSTM-CNN model, the LSTM layer is used to process temporal sequences and the CNN layer is used to extract features A wireless sensor system including six inertial measurement units (IMU) fixed on the six positions of the lower limbs was developed. The difference in the gait recognition performance of the LSTM-CNN model was estimated using different groups of input data collected by seven different IMU grouping methods. Four phases in a complete gait were considered in this paper including the supporting phase with the right hill strike (SU-RHS), left leg swimming phase (SW-L), the supporting phase with the left hill strike (SU-LHS), and right leg swimming phase (SW-R). The results show that the best performance of the model in gait recognition appeared based on the group of data from all the six IMUs, with the recognition precision and macro-F1 unto 95.03% and 95.29%, respectively. At the same time, the best phase recognition accuracy for SU-RHS and SW-R appeared and up to 96.49% and 95.64%, respectively. The results also showed the best phase recognition accuracy (97.22%) for SW-L was acquired based on the group of data from four IMUs located at the left and right thighs and shanks. Comparably, the best phase recognition accuracy (97.86%) for SU-LHS was acquired based on the group of data from four IMUs located at left and right shanks and feet. Ulteriorly, a novel gait recognition method based on Data Pre-Filtering Long Short-Term Memory and Convolutional Neural Network (DPF-LSTM-CNN) model was proposed and its performance for gait phase recognition was evaluated. The experiment results showed that the recognition accuracy reached 97.21%, which was the highest compared to Deep convolutional neural networks (DCNN) and CNN-LSTM.

摘要

步态相位识别在康复设备的发展中具有重要意义。本文将长短时记忆 (LSTM) 和卷积神经网络 (CNN) 的优势相结合(LSTM-CNN),提出了一种基于 LSTM-CNN 神经网络模型的步态相位识别方法。在 LSTM-CNN 模型中,使用 LSTM 层处理时间序列,使用 CNN 层提取特征。开发了一个包括六个惯性测量单元 (IMU) 的无线传感器系统,这些 IMU 固定在下肢的六个位置上。通过使用七种不同的 IMU 分组方法采集的不同组输入数据来估计 LSTM-CNN 模型的步态识别性能差异。本文考虑了一个完整步态的四个阶段,包括右侧足趾触地的支撑阶段 (SU-RHS)、左腿游泳阶段 (SW-L)、左侧足趾触地的支撑阶段 (SU-LHS) 和右腿游泳阶段 (SW-R)。结果表明,模型在步态识别方面的最佳性能出现在基于来自所有六个 IMU 的数据组,识别精度和宏观 F1 分别达到 95.03%和 95.29%。同时,SU-RHS 和 SW-R 的最佳相位识别精度分别达到 96.49%和 95.64%。结果还表明,基于位于左大腿和小腿及右大腿和小腿的四个 IMU 的数据组,SW-L 的最佳相位识别精度(97.22%)。相比之下,基于位于左小腿和脚以及右小腿和脚的四个 IMU 的数据组,SU-LHS 的最佳相位识别精度(97.86%)。此外,提出了一种基于数据预滤波长短时记忆和卷积神经网络(DPF-LSTM-CNN)模型的新型步态识别方法,并对其步态相位识别性能进行了评估。实验结果表明,与深度卷积神经网络 (DCNN) 和 CNN-LSTM 相比,识别精度达到 97.21%,是最高的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/246e873d9a7c/sensors-23-05905-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/ae3128acdcee/sensors-23-05905-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/0f606b70fc5f/sensors-23-05905-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/05a7edf81d2c/sensors-23-05905-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/db8c6f3b48af/sensors-23-05905-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/7ca0c4f512df/sensors-23-05905-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/52f4049d5626/sensors-23-05905-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/af7ac3a5e049/sensors-23-05905-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/bafefec7928c/sensors-23-05905-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/967045e73f0e/sensors-23-05905-g009a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/dde2ae6c3af6/sensors-23-05905-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/246e873d9a7c/sensors-23-05905-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/ae3128acdcee/sensors-23-05905-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/0f606b70fc5f/sensors-23-05905-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/05a7edf81d2c/sensors-23-05905-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/db8c6f3b48af/sensors-23-05905-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/7ca0c4f512df/sensors-23-05905-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/52f4049d5626/sensors-23-05905-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/af7ac3a5e049/sensors-23-05905-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/bafefec7928c/sensors-23-05905-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/967045e73f0e/sensors-23-05905-g009a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/dde2ae6c3af6/sensors-23-05905-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92be/10347001/246e873d9a7c/sensors-23-05905-g011.jpg

相似文献

[1]
A Novel Gait Phase Recognition Method Based on DPF-LSTM-CNN Using Wearable Inertial Sensors.

Sensors (Basel). 2023-6-26

[2]
Novel Deep Learning Network for Gait Recognition Using Multimodal Inertial Sensors.

Sensors (Basel). 2023-1-11

[3]
Estimation of Muscle Forces of Lower Limbs Based on CNN-LSTM Neural Network and Wearable Sensor System.

Sensors (Basel). 2024-2-5

[4]
Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.

Biosensors (Basel). 2020-8-27

[5]
Bi-Directional Long Short-Term Memory-Based Gait Phase Recognition Method Robust to Directional Variations in Subject's Gait Progression Using Wearable Inertial Sensor.

Sensors (Basel). 2024-2-17

[6]
Applying deep neural networks and inertial measurement unit in recognizing irregular walking differences in the real world.

Appl Ergon. 2021-10

[7]
A novel measurement approach to dynamic change of limb length discrepancy using deep learning and wearable sensors.

Sci Prog. 2024

[8]
Pedestrian Navigation Method Based on Machine Learning and Gait Feature Assistance.

Sensors (Basel). 2020-3-10

[9]
An Acceleration Based Fusion of Multiple Spatiotemporal Networks for Gait Phase Detection.

Int J Environ Res Public Health. 2020-8-5

[10]
A Lightweight Attention-Based CNN Model for Efficient Gait Recognition with Wearable IMU Sensors.

Sensors (Basel). 2021-4-19

引用本文的文献

[1]
EgoFall: Real-Time Privacy-Preserving Fall Risk Assessment With a Single On-Body Tracking Camera.

IEEE Trans Neural Syst Rehabil Eng. 2025

[2]
Ubiquitous Gait Analysis through Footstep-Induced Floor Vibrations.

Sensors (Basel). 2024-4-13

[3]
Estimation of Muscle Forces of Lower Limbs Based on CNN-LSTM Neural Network and Wearable Sensor System.

Sensors (Basel). 2024-2-5

本文引用的文献

[1]
Deep Convolutional and LSTM Networks on Multi-Channel Time Series Data for Gait Phase Recognition.

Sensors (Basel). 2021-1-25

[2]
An Evaluation of Three Kinematic Methods for Gait Event Detection Compared to the Kinetic-Based 'Gold Standard'.

Sensors (Basel). 2020-9-15

[3]
Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.

Biosensors (Basel). 2020-8-27

[4]
Stance and Swing Detection Based on the Angular Velocity of Lower Limb Segments During Walking.

Front Neurorobot. 2019-7-24

[5]
Recent developments and challenges of lower extremity exoskeletons.

J Orthop Translat. 2015-10-17

[6]
Adaptive method for real-time gait phase detection based on ground contact forces.

Gait Posture. 2015-1

[7]
Two simple methods for determining gait events during treadmill and overground walking using kinematic data.

Gait Posture. 2008-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索