Suppr超能文献

锌缺乏会在酵母中诱导自噬。

Zinc starvation induces autophagy in yeast.

作者信息

Kawamata Tomoko, Horie Tetsuro, Matsunami Miou, Sasaki Michiko, Ohsumi Yoshinori

机构信息

Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503.

Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503; Research Center for Odontology, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Tokyo 102-8159, Japan.

出版信息

J Biol Chem. 2017 May 19;292(20):8520-8530. doi: 10.1074/jbc.M116.762948. Epub 2017 Mar 6.

Abstract

Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes.

摘要

锌是所有生命形式所必需的营养素。在细胞内,大部分锌与蛋白质结合。由于锌作为许多蛋白质的催化或结构辅助因子,细胞必须在严重缺锌的条件下维持锌稳态。在酵母中,转录因子Zap1控制锌摄取和动员所需基因的表达,但迄今为止,锌饥饿状态下现有锌结合蛋白的命运仍知之甚少。自噬是一种进化上保守的细胞降解/循环过程,其中细胞质蛋白和细胞器被隔离在液泡/溶酶体中进行降解。在这项研究中,我们研究了自噬在锌饥饿状态下是如何发挥作用的。锌耗竭诱导了非选择性自噬,这对锌限制生长很重要。锌饥饿诱导的自噬与Zap1的转录激活没有直接关系。相反,TORC1失活介导了锌饥饿诱导的自噬。丰富的锌蛋白,如Adh1、Fba1和核糖体蛋白Rpl37,以自噬依赖的方式被降解。但自噬的靶点并不局限于锌结合蛋白。当细胞内锌严重耗尽时,这种非选择性自噬在从降解的蛋白质中释放锌并将锌循环用于其他重要目的方面发挥作用。

相似文献

1
Zinc starvation induces autophagy in yeast.
J Biol Chem. 2017 May 19;292(20):8520-8530. doi: 10.1074/jbc.M116.762948. Epub 2017 Mar 6.
2
Zinc deficiency: An unexpected trigger for autophagy.
J Biol Chem. 2017 May 19;292(20):8531-8532. doi: 10.1074/jbc.H116.762948.
3
Glucose starvation inhibits autophagy via vacuolar hydrolysis and induces plasma membrane internalization by down-regulating recycling.
J Biol Chem. 2014 Jun 13;289(24):16736-47. doi: 10.1074/jbc.M113.525782. Epub 2014 Apr 21.
4
Repression of ADH1 and ADH3 during zinc deficiency by Zap1-induced intergenic RNA transcripts.
EMBO J. 2006 Dec 13;25(24):5726-34. doi: 10.1038/sj.emboj.7601453. Epub 2006 Nov 30.
5
TORC1 activity is partially reduced under nitrogen starvation conditions in sake yeast Kyokai no. 7, Saccharomyces cerevisiae.
J Biosci Bioeng. 2016 Mar;121(3):247-52. doi: 10.1016/j.jbiosc.2015.07.002. Epub 2015 Aug 10.
6
Ubiquitin regulates TORC1 in yeast Saccharomyces cerevisiae.
Mol Microbiol. 2016 Apr;100(2):303-14. doi: 10.1111/mmi.13319. Epub 2016 Mar 10.
7
Fatty acid synthase is preferentially degraded by autophagy upon nitrogen starvation in yeast.
Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1434-9. doi: 10.1073/pnas.1409476112. Epub 2015 Jan 20.
8
Induction of autophagy by phosphate starvation in an Atg11-dependent manner in Saccharomyces cerevisiae.
Biochem Biophys Res Commun. 2017 Jan 29;483(1):522-527. doi: 10.1016/j.bbrc.2016.12.112. Epub 2016 Dec 21.
9
Autophagy induction under carbon starvation conditions is negatively regulated by carbon catabolite repression.
J Biol Chem. 2017 Dec 1;292(48):19905-19918. doi: 10.1074/jbc.M117.817510. Epub 2017 Oct 17.
10
Reciprocal Regulation of Target of Rapamycin Complex 1 and Potassium Accumulation.
J Biol Chem. 2017 Jan 13;292(2):563-574. doi: 10.1074/jbc.M116.746982. Epub 2016 Nov 28.

引用本文的文献

1
Role of autophagy in plant growth and adaptation to salt stress.
Planta. 2025 Jan 31;261(3):49. doi: 10.1007/s00425-025-04615-2.
2
Coordination chemistry suggests that independently observed benefits of metformin and Zn against COVID-19 are not independent.
Biometals. 2024 Aug;37(4):983-1022. doi: 10.1007/s10534-024-00590-5. Epub 2024 Apr 5.
3
Optimal control of ribosome population for gene expression under periodic nutrient intake.
J R Soc Interface. 2024 Mar;21(212):20230652. doi: 10.1098/rsif.2023.0652. Epub 2024 Mar 6.
4
1,10-phenanthroline inhibits sumoylation and reveals that yeast SUMO modifications are highly transient.
EMBO Rep. 2024 Jan;25(1):68-81. doi: 10.1038/s44319-023-00010-8. Epub 2024 Jan 5.
5
Nutrient-dependent signaling pathways that control autophagy in yeast.
FEBS Lett. 2024 Jan;598(1):32-47. doi: 10.1002/1873-3468.14741. Epub 2023 Oct 9.
7
Regulation of autophagy and lipid accumulation under phosphate limitation in .
Front Microbiol. 2023 Jan 26;13:1046114. doi: 10.3389/fmicb.2022.1046114. eCollection 2022.
8
Quiescence in .
Annu Rev Genet. 2022 Nov 30;56:253-278. doi: 10.1146/annurev-genet-080320-023632.
9
Melanin Treatment Effect of Vacuoles-Zinc Oxide Nanoparticles Combined with Ascorbic Acid.
Mol Biotechnol. 2023 Jul;65(7):1119-1128. doi: 10.1007/s12033-022-00608-8. Epub 2022 Nov 29.
10
Autophagy: a game changer for plant development and crop improvement.
Planta. 2022 Oct 28;256(6):103. doi: 10.1007/s00425-022-04004-z.

本文引用的文献

1
Recycling of iron via autophagy is critical for the transition from glycolytic to respiratory growth.
J Biol Chem. 2017 May 19;292(20):8533-8543. doi: 10.1074/jbc.M116.762963. Epub 2017 Mar 20.
3
Bulk RNA degradation by nitrogen starvation-induced autophagy in yeast.
EMBO J. 2015 Jan 13;34(2):154-68. doi: 10.15252/embj.201489083. Epub 2014 Dec 2.
4
Structural basis for the inhibition of the eukaryotic ribosome.
Nature. 2014 Sep 25;513(7519):517-22. doi: 10.1038/nature13737. Epub 2014 Sep 10.
5
Zinc and autophagy.
Biometals. 2014 Dec;27(6):1087-96. doi: 10.1007/s10534-014-9773-0. Epub 2014 Jul 11.
6
Structural basis of starvation-induced assembly of the autophagy initiation complex.
Nat Struct Mol Biol. 2014 Jun;21(6):513-21. doi: 10.1038/nsmb.2822. Epub 2014 May 4.
7
Historical landmarks of autophagy research.
Cell Res. 2014 Jan;24(1):9-23. doi: 10.1038/cr.2013.169. Epub 2013 Dec 24.
8
Role of zinc in the regulation of autophagy during ethanol exposure in human hepatoma cells.
Biol Trace Elem Res. 2013 Dec;156(1-3):350-6. doi: 10.1007/s12011-013-9816-3. Epub 2013 Sep 24.
10
Transient sequestration of TORC1 into stress granules during heat stress.
Mol Cell. 2012 Jul 27;47(2):242-52. doi: 10.1016/j.molcel.2012.05.019. Epub 2012 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验