Suppr超能文献

多磷酸盐颗粒生物发生在 细胞饥饿时与细胞周期退出在时间和功能上相关联。

Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in .

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.

Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125.

出版信息

Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2440-E2449. doi: 10.1073/pnas.1615575114. Epub 2017 Mar 6.

Abstract

Polyphosphate (polyP) granule biogenesis is an ancient and ubiquitous starvation response in bacteria. Although the ability to make polyP is important for survival during quiescence and resistance to diverse environmental stresses, granule genesis is poorly understood. Using quantitative microscopy at high spatial and temporal resolution, we show that granule genesis in is tightly organized under nitrogen starvation. Following nucleation as many microgranules throughout the nucleoid, polyP granules consolidate and become transiently spatially organized during cell cycle exit. Between 1 and 3 h after nitrogen starvation, a minority of cells have divided, yet the total granule number per cell decreases, total granule volume per cell dramatically increases, and individual granules grow to occupy diameters as large as ∼200 nm. At their peak, mature granules constitute ∼2% of the total cell volume and are evenly spaced along the long cell axis. Following cell cycle exit, granules initially retain a tight spatial organization, yet their size distribution and spacing relax deeper into starvation. Mutant cells lacking polyP elongate during starvation and contain more than one origin. PolyP promotes cell cycle exit by functioning at a step after DNA replication initiation. Together with the universal starvation alarmone (p)ppGpp, polyP has an additive effect on nucleoid dynamics and organization during starvation. Notably, cell cycle exit is temporally coupled to a net increase in polyP granule biomass, suggesting that net synthesis, rather than consumption of the polymer, is important for the mechanism by which polyP promotes completion of cell cycle exit during starvation.

摘要

多聚磷酸盐 (polyP) 颗粒的生物发生是细菌中一种古老而普遍的饥饿反应。尽管在休眠和抵抗各种环境压力时制造多聚磷酸盐的能力对生存很重要,但颗粒的发生机制还知之甚少。通过高时空分辨率的定量显微镜观察,我们发现 在氮饥饿下,颗粒的发生受到严格调控。在核区形成许多微颗粒作为起始点后,多聚磷酸盐颗粒在细胞周期退出时整合并暂时在空间上组织起来。在氮饥饿后 1 到 3 小时内,少数细胞已经分裂,但每个细胞的总颗粒数减少,每个细胞的总颗粒体积显著增加,单个颗粒生长到直径约 200nm。在其高峰期,成熟颗粒占总细胞体积的约 2%,并沿着长细胞轴均匀分布。在细胞周期退出后,颗粒最初保持紧密的空间组织,但它们的大小分布和间隔在饥饿过程中会逐渐放松。缺乏多聚磷酸盐的突变细胞在饥饿时会伸长,并包含多个起始点。多聚磷酸盐通过在 DNA 复制起始后的一个步骤发挥作用,促进细胞周期退出。与普遍的饥饿警报素 (p)ppGpp 一起,多聚磷酸盐对饥饿期间核区的动态和组织具有附加作用。值得注意的是,细胞周期退出与多聚磷酸盐颗粒生物量的净增加在时间上相关,这表明净合成,而不是聚合物的消耗,对于多聚磷酸盐在饥饿期间促进细胞周期退出完成的机制很重要。

相似文献

1
Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in .
Proc Natl Acad Sci U S A. 2017 Mar 21;114(12):E2440-E2449. doi: 10.1073/pnas.1615575114. Epub 2017 Mar 6.
2
The Histone H1-Like Protein AlgP Facilitates Even Spacing of Polyphosphate Granules in Pseudomonas aeruginosa.
mBio. 2022 Jun 28;13(3):e0246321. doi: 10.1128/mbio.02463-21. Epub 2022 Apr 18.
3
Polyphosphate affects cytoplasmic and chromosomal dynamics in nitrogen-starved .
Proc Natl Acad Sci U S A. 2024 Apr 9;121(15):e2313004121. doi: 10.1073/pnas.2313004121. Epub 2024 Apr 2.
5
phoU inactivation in Pseudomonas aeruginosa enhances accumulation of ppGpp and polyphosphate.
Appl Environ Microbiol. 2015 May 1;81(9):3006-15. doi: 10.1128/AEM.04168-14. Epub 2015 Feb 20.
6
Chromosome replication and segregation govern the biogenesis and inheritance of inorganic polyphosphate granules.
Mol Biol Cell. 2013 Oct;24(20):3177-86. doi: 10.1091/mbc.E13-04-0182. Epub 2013 Aug 28.
7
Differential regulation of polyphosphate genes in Pseudomonas aeruginosa.
Mol Genet Genomics. 2017 Feb;292(1):105-116. doi: 10.1007/s00438-016-1259-z. Epub 2016 Oct 15.
8
Migration of Polyphosphate Granules in Agrobacterium tumefaciens.
Microb Physiol. 2022;32(3-4):71-82. doi: 10.1159/000521970. Epub 2022 Feb 15.
9
Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism.
Appl Environ Microbiol. 2004 Dec;70(12):7404-12. doi: 10.1128/AEM.70.12.7404-7412.2004.

引用本文的文献

3
HP-Bodies - Ancestral Condensates that Regulate RNA Turnover and Protein Translation in Bacteria.
bioRxiv. 2025 Feb 6:2025.02.06.636932. doi: 10.1101/2025.02.06.636932.
4
Polyphosphate: The "Dark Matter" of Bacterial Chromatin Structure.
Mol Microbiol. 2025 Mar;123(3):279-293. doi: 10.1111/mmi.15350. Epub 2025 Feb 18.
5
The structural and functional analysis of mycobacteria cysteine desulfurase-loaded encapsulin.
Commun Biol. 2024 Dec 19;7(1):1656. doi: 10.1038/s42003-024-07299-8.
7
Fluoride and gallein regulate polyphosphate accumulation in dental caries-associated .
Microbiology (Reading). 2024 Nov;170(11). doi: 10.1099/mic.0.001519.
8
Reentrant DNA shells tune polyphosphate condensate size.
Nat Commun. 2024 Oct 26;15(1):9258. doi: 10.1038/s41467-024-53469-x.
9
kills in a polyphosphate-dependent manner.
mSphere. 2024 Oct 29;9(10):e0068624. doi: 10.1128/msphere.00686-24. Epub 2024 Oct 4.
10
Niacinamide Antimicrobial Efficacy and Its Mode of Action via Microbial Cell Cycle Arrest.
Microorganisms. 2024 Aug 2;12(8):1581. doi: 10.3390/microorganisms12081581.

本文引用的文献

1
Polyphosphate: A Conserved Modifier of Amyloidogenic Processes.
Mol Cell. 2016 Sep 1;63(5):768-80. doi: 10.1016/j.molcel.2016.07.016. Epub 2016 Aug 25.
2
Droplet organelles?
EMBO J. 2016 Aug 1;35(15):1603-12. doi: 10.15252/embj.201593517. Epub 2016 Jun 29.
3
ppGpp couples transcription to DNA repair in E. coli.
Science. 2016 May 20;352(6288):993-6. doi: 10.1126/science.aad6945.
4
Polyphosphate is involved in cell cycle progression and genomic stability in Saccharomyces cerevisiae.
Mol Microbiol. 2016 Aug;101(3):367-80. doi: 10.1111/mmi.13396. Epub 2016 May 3.
5
Developmental accumulation of inorganic polyphosphate affects germination and energetic metabolism in Dictyostelium discoideum.
Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):996-1001. doi: 10.1073/pnas.1519440113. Epub 2016 Jan 11.
7
Two strictly polyphosphate-dependent gluco(manno)kinases from diazotrophic Cyanobacteria with potential to phosphorylate hexoses from polyphosphates.
Appl Microbiol Biotechnol. 2015 May;99(9):3887-900. doi: 10.1007/s00253-014-6184-7. Epub 2014 Nov 9.
8
Liquid-liquid phase separation in biology.
Annu Rev Cell Dev Biol. 2014;30:39-58. doi: 10.1146/annurev-cellbio-100913-013325.
9
Ultrastructure and complex polar architecture of the human pathogen Campylobacter jejuni.
Microbiologyopen. 2014 Oct;3(5):702-10. doi: 10.1002/mbo3.200. Epub 2014 Jul 25.
10
Connecting the nucleolus to the cell cycle and human disease.
FASEB J. 2014 Aug;28(8):3290-6. doi: 10.1096/fj.14-254680. Epub 2014 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验