Neff Patrizio, Madeo Angela, Barbagallo Gabriele, d'Agostino Marco Valerio, Abreu Rafael, Ghiba Ionel-Dumitrel
Nonlinear Analysis and Modelling , Fakultät für Mathematik , Universität Duisburg-Essen , Mathematik-Carrée , Thea-Leymann-Straße 9 , 45127 Essen , Germany.
LGCIE SMS-ID, INSA-Lyon, Université de Lyon, 20 avenue Albert Einstein, 69621 Villeurbanne Cedex, France; IUF, Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France.
Proc Math Phys Eng Sci. 2017 Jan;473(2197):20160790. doi: 10.1098/rspa.2016.0790.
For the recently introduced isotropic-relaxed micromorphic generalized continuum model, we show that, under the assumption of positive-definite energy, planar harmonic waves have real velocity. We also obtain a necessary and sufficient condition for real wave velocity which is weaker than the positive definiteness of the energy. Connections to isotropic linear elasticity and micropolar elasticity are established. Notably, we show that strong ellipticity does not imply real wave velocity in micropolar elasticity, whereas it does in isotropic linear elasticity.
对于最近引入的各向同性松弛微形态广义连续体模型,我们证明,在能量正定的假设下,平面谐波具有实速度。我们还得到了一个实波速的充要条件,该条件比能量的正定条件更弱。建立了与各向同性线性弹性和微极弹性的联系。值得注意的是,我们表明强椭圆性并不意味着微极弹性中的实波速,而在各向同性线性弹性中则意味着实波速。