Madeo Angela, Neff Patrizio, Aifantis Elias C, Barbagallo Gabriele, d'Agostino Marco Valerio
LGCIE SMS-ID, Université de Lyon, 20 avenue Albert Einstein, 69621 Villeurbanne Cedex, France; IUF, Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France.
Fakultät für Mathematik , Universität Duisburg-Essen, Mathematik-Carrée , Thea-Leymann-Straße 9, 45127 Essen, Germany.
Proc Math Phys Eng Sci. 2017 Feb;473(2198):20160722. doi: 10.1098/rspa.2016.0722.
In this paper, the role of gradient micro-inertia terms [Formula: see text] and free micro-inertia terms [Formula: see text] is investigated to unveil their respective effects on the dynamic behaviour of band-gap metamaterials. We show that the term [Formula: see text] alone is only able to disclose relatively simplified dispersive behaviour. On the other hand, the term [Formula: see text] alone describes the full complex behaviour of band-gap metamaterials. A suitable mixing of the two micro-inertia terms allows us to describe a new feature of the relaxed-micromorphic model, i.e. the description of a second band-gap occurring for higher frequencies. We also show that a split of the gradient micro-inertia [Formula: see text], in the sense of Cartan-Lie decomposition of matrices, allows us to flatten separately the longitudinal and transverse optic branches, thus giving us the possibility of a second band-gap. Finally, we investigate the effect of the gradient inertia [Formula: see text] on more classical enriched models such as the Mindlin-Eringen and the internal variable ones. We find that the addition of such a gradient micro-inertia allows for the onset of one band-gap in the Mindlin-Eringen model and three band-gaps in the internal variable model. In this last case, however, non-local effects cannot be accounted for, which is a too drastic simplification for most metamaterials. We conclude that, even when adding gradient micro-inertia terms, the relaxed micromorphic model remains the best performing one, among the considered enriched models, for the description of non-local band-gap metamaterials.
在本文中,研究了梯度微惯性项[公式:见原文]和自由微惯性项[公式:见原文]的作用,以揭示它们对带隙超材料动态行为的各自影响。我们表明,仅项[公式:见原文]只能揭示相对简化的色散行为。另一方面,仅项[公式:见原文]描述了带隙超材料的完整复杂行为。将这两个微惯性项进行适当混合,使我们能够描述松弛微形态模型的一个新特征,即描述在更高频率出现的第二个带隙。我们还表明,从矩阵的嘉当 - 李分解意义上讲,梯度微惯性[公式:见原文]的拆分使我们能够分别展平纵向和横向光学分支,从而使我们有可能获得第二个带隙。最后,我们研究了梯度惯性[公式:见原文]对更经典的富集模型(如明德林 - 埃ringen模型和内变量模型)的影响。我们发现,添加这种梯度微惯性会使明德林 - 埃ringen模型出现一个带隙,内变量模型出现三个带隙。然而,在后一种情况下,无法考虑非局部效应,这对大多数超材料来说是过于极端的简化。我们得出结论,即使添加梯度微惯性项,在考虑的富集模型中,松弛微形态模型对于描述非局部带隙超材料仍然是性能最佳的模型。