Suppr超能文献

使用统计形状模型进行剂量覆盖计算——应用于宫颈癌放射治疗

Dose coverage calculation using a statistical shape model-applied to cervical cancer radiotherapy.

作者信息

Tilly David, van de Schoot Agustinus J A J, Grusell Erik, Bel Arjan, Ahnesjö Anders

机构信息

Medical Radiation Physics, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden. Elekta Instruments AB, Stockholm, Sweden.

出版信息

Phys Med Biol. 2017 May 21;62(10):4140-4159. doi: 10.1088/1361-6560/aa64ef. Epub 2017 Mar 7.

Abstract

A comprehensive methodology for treatment simulation and evaluation of dose coverage probabilities is presented where a population based statistical shape model (SSM) provide samples of fraction specific patient geometry deformations. The learning data consists of vector fields from deformable image registration of repeated imaging giving intra-patient deformations which are mapped to an average patient serving as a common frame of reference. The SSM is created by extracting the most dominating eigenmodes through principal component analysis of the deformations from all patients. The sampling of a deformation is thus reduced to sampling weights for enough of the most dominating eigenmodes that describe the deformations. For the cervical cancer patient datasets in this work, we found seven eigenmodes to be sufficient to capture 90% of the variance in the deformations of the, and only three eigenmodes for stability in the simulated dose coverage probabilities. The normality assumption of the eigenmode weights was tested and found relevant for the 20 most dominating eigenmodes except for the first. Individualization of the SSM is demonstrated to be improved using two deformation samples from a new patient. The probabilistic evaluation provided additional information about the trade-offs compared to the conventional single dataset treatment planning.

摘要

本文提出了一种用于治疗模拟和剂量覆盖概率评估的综合方法,其中基于人群的统计形状模型(SSM)提供了分次特异性患者几何变形的样本。学习数据由来自重复成像的可变形图像配准的向量场组成,这些向量场给出了患者内部的变形,并被映射到作为公共参考框架的平均患者身上。通过对所有患者的变形进行主成分分析来提取最主要的特征模式,从而创建SSM。因此,变形的采样被简化为对足够数量的描述变形的最主要特征模式的采样权重。对于本研究中的宫颈癌患者数据集,我们发现七个特征模式足以捕获变形中90%的方差,而在模拟剂量覆盖概率中,仅三个特征模式就足以保持稳定性。除了第一个特征模式外,对特征模式权重的正态性假设进行了测试,并发现对于20个最主要的特征模式是相关的。使用来自新患者的两个变形样本证明了SSM的个体化得到了改善。与传统的单数据集治疗计划相比,概率评估提供了有关权衡的额外信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验