Xiao Hanguang, Qasem Ahmad, Butlin Mark, Avolio Alberto
aChongqing Key Laboratory of Modern Photoelectric Detection Technology and Instrument, Chongqing University of Technology, Chongqing, China bDepartment of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University cAtCor Medical, Sydney, New South Wales, Australia.
J Hypertens. 2017 Aug;35(8):1577-1585. doi: 10.1097/HJH.0000000000001337.
Current aortic SBP estimation methods require recording of a peripheral pressure waveform, a step with no consensus on method. This study investigates the possibility of aortic SBP estimation from radial SBP and DBP using artificial neural networks (ANN) with [ANNSBP.DBP.heart rate (HR)] and without HR (ANNSBP.DBP).
Ten-fold cross validation was applied to invasive, simultaneously recorded aortic and radial pressure during rest and nitroglycerin infusion (n = 62 patients). The results of the ANN models were compared with an ANN model using additional waveform features (ANNwaveform), to an N-point moving average method (NPMA) and to existing, validated generalized transfer function (GTF).
Estimated aortic SBP for all methods was on average less than 1 mmHg away from measured aortic SBP with the exception of NPMA (difference 2.0 ± 3.5 mmHg, P = 0.62). Variability of the difference was significantly greater in ANNSBP.DBP.HR and ANNSBP.DBP (both SD of ± 5.9 mmHg, P < 0.001 compared with GTF, ± 4.0 mmHg, P < 0.001). Inclusion of waveform features decreased the variability (ANNwaveform ± 3.9 mmHg, P = 0.264). Estimated aortic SBP in all models was correlated with measured SBP, with ANN models providing statistically similar results to the GTF method, only the NPMA being statistically different (P = 0.031).
These findings indicate that use of radial SBP, DBP, and HR alone can provide aortic SBP estimation comparable with the GTF, albeit with slightly greater variance. Pending noninvasive validation, the technique provides plausible aortic SBP estimation without waveform analysis.
目前的主动脉收缩压(SBP)估计方法需要记录外周压力波形,而这一步骤在方法上尚无共识。本研究探讨了使用人工神经网络(ANN),基于桡动脉收缩压和舒张压以及心率(HR)[ANNSBP.DBP.HR]和不考虑心率(ANNSBP.DBP)来估计主动脉收缩压的可能性。
对62例患者在静息和静脉输注硝酸甘油期间同时记录的有创主动脉和桡动脉压力进行十折交叉验证。将人工神经网络模型的结果与使用额外波形特征的人工神经网络模型(ANNwaveform)、N点移动平均法(NPMA)以及现有的经过验证的广义传递函数(GTF)进行比较。
除NPMA外,所有方法估计的主动脉收缩压与测量的主动脉收缩压平均相差不到1 mmHg(差异为2.0±3.5 mmHg,P = 0.62)。ANNSBP.DBP.HR和ANNSBP.DBP中差异的变异性显著更大(两者标准差均为±5.9 mmHg,与GTF相比,P < 0.001,GTF标准差为±4.0 mmHg,P < 0.001)。纳入波形特征可降低变异性(ANNwaveform为±3.9 mmHg,P = 0.264)。所有模型中估计的主动脉收缩压与测量的收缩压相关,人工神经网络模型提供的结果与GTF方法在统计学上相似,只有NPMA在统计学上不同(P = 0.031)。
这些发现表明,单独使用桡动脉收缩压、舒张压和心率即可提供与GTF相当的主动脉收缩压估计值,尽管方差略大。在进行无创验证之前,该技术无需波形分析即可提供合理的主动脉收缩压估计值。