Suppr超能文献

利用机器学习评估血管衰老的潜力:现状与未来研究

Leveraging the potential of machine learning for assessing vascular ageing: state-of-the-art and future research.

作者信息

Bikia Vasiliki, Fong Terence, Climie Rachel E, Bruno Rosa-Maria, Hametner Bernhard, Mayer Christopher, Terentes-Printzios Dimitrios, Charlton Peter H

机构信息

Laboratory of Hemodynamics and Cardiovascular Technology (LHTC), Swiss Federal Institute of Technology, CH-1015 Lausanne, Vaud, Switzerland.

Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Victoria, 3004 Australia.

出版信息

Eur Heart J Digit Health. 2021 Dec 29;2(4):676-690. doi: 10.1093/ehjdh/ztab089. Epub 2021 Oct 18.

Abstract

Vascular ageing biomarkers have been found to be predictive of cardiovascular risk independently of classical risk factors, yet are not widely used in clinical practice. In this review, we present two basic approaches for using machine learning (ML) to assess vascular age: parameter estimation and risk classification. We then summarize their role in developing new techniques to assess vascular ageing quickly and accurately. We discuss the methods used to validate ML-based markers, the evidence for their clinical utility, and key directions for future research. The review is complemented by case studies of the use of ML in vascular age assessment which can be replicated using freely available data and code.

摘要

血管衰老生物标志物已被发现可独立于经典风险因素预测心血管风险,但在临床实践中尚未得到广泛应用。在本综述中,我们介绍了两种使用机器学习(ML)评估血管年龄的基本方法:参数估计和风险分类。然后,我们总结了它们在开发快速准确评估血管衰老的新技术方面的作用。我们讨论了用于验证基于ML的标志物的方法、其临床效用的证据以及未来研究的关键方向。本综述辅以在血管年龄评估中使用ML的案例研究,这些案例研究可以使用免费可得的数据和代码进行复制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b005/9707907/8df48beb2867/ztab089f5.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验