Suppr超能文献

上肢假肢使用者对未满足需求和创新技术的看法。

Upper extremity prosthesis user perspectives on unmet needs and innovative technology.

作者信息

Benz Heather L, Rose Laura, Olgac Okan, Kreutz Karen, Saha Anindita, Civillico Eugene F

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:287-290. doi: 10.1109/EMBC.2016.7590696.

Abstract

The needs of individuals with upper limb amputation and congenital limb difference are not being fully met by current prostheses, as evidenced by prosthesis rejection, non-wear, and user reports of pain and challenging activities. Emerging technologies such as dexterous sensorized robotic limbs, osseointegrated prostheses, implantable EMG electrodes, and electrical stimulation for sensory feedback have the potential to address unmet needs, but pose additional risks. We plan to assess upper limb prosthesis user needs and perspectives on these new benefits and risks using an extensive quantitative survey. In preparation for this survey, we report here on qualitative interviews with seven individuals with upper limb amputation or congenital limb difference. Unstructured text was mined using topic modeling and the results compared with identified themes. A more complete understanding of how novel technologies could address real user concerns will inform implementation of new technologies and regulatory decision-making.

摘要

目前的假肢尚未充分满足上肢截肢者和先天性肢体差异者的需求,这体现在假肢被排斥、不使用以及使用者关于疼痛和挑战性活动的报告中。诸如灵巧的传感机器人肢体、骨整合假肢、植入式肌电图电极以及用于感觉反馈的电刺激等新兴技术有可能满足未被满足的需求,但也带来了额外风险。我们计划通过广泛的定量调查来评估上肢假肢使用者对这些新益处和风险的需求及看法。为准备此次调查,我们在此报告对7名上肢截肢或先天性肢体差异者进行的定性访谈。使用主题建模挖掘非结构化文本,并将结果与已确定的主题进行比较。对新技术如何解决实际用户问题的更全面理解将为新技术的实施和监管决策提供信息。

相似文献

1
Upper extremity prosthesis user perspectives on unmet needs and innovative technology.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:287-290. doi: 10.1109/EMBC.2016.7590696.
3
Patient Perspectives on Osseointegration: A National Survey of Veterans with Upper Limb Amputation.
PM R. 2019 Dec;11(12):1261-1271. doi: 10.1002/pmrj.12147. Epub 2019 May 29.
5
Amputee, clinician, and regulator perspectives on current and prospective upper extremity prosthetic technologies.
Assist Technol. 2023 May 4;35(3):258-270. doi: 10.1080/10400435.2021.2020935. Epub 2022 Feb 19.
6
Evaluating the Ability of Congenital Upper Extremity Amputees to Control a Multi-Degree of Freedom Myoelectric Prosthesis.
J Hand Surg Am. 2022 Oct;47(10):1019.e1-1019.e9. doi: 10.1016/j.jhsa.2021.08.011. Epub 2021 Oct 15.
7
A survey of overuse problems in patients with acquired or congenital upper limb deficiency.
Prosthet Orthot Int. 2016 Aug;40(4):497-502. doi: 10.1177/0309364615584658. Epub 2015 May 28.
8
Perspectives on the comparative benefits of body-powered and myoelectric upper limb prostheses.
J Neuroeng Rehabil. 2024 Aug 8;21(1):138. doi: 10.1186/s12984-024-01436-4.
9
Controlling a multi-degree of freedom upper limb prosthesis using foot controls: user experience.
Disabil Rehabil Assist Technol. 2014 Jul;9(4):318-29. doi: 10.3109/17483107.2013.822024. Epub 2013 Jul 31.

引用本文的文献

2
Extended physiological proprioception is affected by transhumeral Socket-Suspended prosthesis use.
J Biomech. 2024 Mar;166:112054. doi: 10.1016/j.jbiomech.2024.112054. Epub 2024 Mar 20.
3
What do users and their aiding professionals want from future devices in upper limb prosthetics? A focus group study.
PLoS One. 2023 Dec 29;18(12):e0295516. doi: 10.1371/journal.pone.0295516. eCollection 2023.
4
A Haptic Sleeve as a Method of Mechanotactile Feedback Restoration for Myoelectric Hand Prosthesis Users.
Front Rehabil Sci. 2022 Apr 25;3:806479. doi: 10.3389/fresc.2022.806479. eCollection 2022.
5
A User-Driven Approach to Prosthetic Upper Limb Development in Korea.
Healthcare (Basel). 2021 Jul 2;9(7):839. doi: 10.3390/healthcare9070839.
6
Sensory Feedback in Hand Prostheses: A Prospective Study of Everyday Use.
Front Neurosci. 2020 Jul 7;14:663. doi: 10.3389/fnins.2020.00663. eCollection 2020.
8
Hard-wired Epimysial Recordings from Normal and Reinnervated Muscle Using a Bone-anchored Device.
Plast Reconstr Surg Glob Open. 2019 Sep 23;7(9):e2391. doi: 10.1097/GOX.0000000000002391. eCollection 2019 Sep.

本文引用的文献

1
Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques.
J Neuroeng Rehabil. 2015 Jun 13;12:53. doi: 10.1186/s12984-015-0044-2.
3
Incorporating patient-preference evidence into regulatory decision making.
Surg Endosc. 2015 Oct;29(10):2984-93. doi: 10.1007/s00464-014-4044-2. Epub 2015 Jan 1.
4
An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs.
Sci Transl Med. 2014 Oct 8;6(257):257re6. doi: 10.1126/scitranslmed.3008933.
5
A neural interface provides long-term stable natural touch perception.
Sci Transl Med. 2014 Oct 8;6(257):257ra138. doi: 10.1126/scitranslmed.3008669.
6
First-in-man demonstration of a fully implanted myoelectric sensors system to control an advanced electromechanical prosthetic hand.
J Neurosci Methods. 2015 Apr 15;244:85-93. doi: 10.1016/j.jneumeth.2014.07.016. Epub 2014 Aug 4.
7
Self-reported and performance-based outcomes using DEKA Arm.
J Rehabil Res Dev. 2014;51(3):351-62. doi: 10.1682/JRRD.2013.08.0180.
8
9
Restoring natural sensory feedback in real-time bidirectional hand prostheses.
Sci Transl Med. 2014 Feb 5;6(222):222ra19. doi: 10.1126/scitranslmed.3006820.
10
The DEKA Arm: its features, functionality, and evolution during the Veterans Affairs Study to optimize the DEKA Arm.
Prosthet Orthot Int. 2014 Dec;38(6):492-504. doi: 10.1177/0309364613506913. Epub 2013 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验