Meng Max Q-H
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:639-642. doi: 10.1109/EMBC.2016.7590783.
Wireless Capsule Endoscopy (WCE) is a standard non-invasive modality for small bowel examination. Recently, the development of computer-aided diagnosis (CAD) systems for gastrointestinal (GI) bleeding detection in WCE image videos has become an active research area with the goal of relieving the workload of physicians. Existing methods based primarily on handcrafted features usually give insufficient accuracy for bleeding detection, due to their limited capability of feature representation. In this paper, we present a new automatic bleeding detection strategy based on a deep convolutional neural network and evaluate our method on an expanded dataset of 10,000 WCE images. Experimental results with an increase of around 2 percentage points in the Fi score demonstrate that our method outperforms the state-of-the-art approaches in WCE bleeding detection. The achieved Fi score is of up to 0.9955.
无线胶囊内镜(WCE)是小肠检查的标准非侵入性方式。最近,用于检测WCE图像视频中胃肠道(GI)出血的计算机辅助诊断(CAD)系统的开发已成为一个活跃的研究领域,其目标是减轻医生的工作量。主要基于手工特征的现有方法通常在出血检测方面准确性不足,因为它们的特征表示能力有限。在本文中,我们提出了一种基于深度卷积神经网络的新型自动出血检测策略,并在一个包含10,000张WCE图像的扩展数据集上评估了我们的方法。Fi分数提高了约2个百分点的实验结果表明,我们的方法在WCE出血检测方面优于现有最先进的方法。所达到的Fi分数高达0.9955。