Suppr超能文献

基于深度学习模型的无线胶囊内镜多类别病变图像检测方法

Image detection method for multi-category lesions in wireless capsule endoscopy based on deep learning models.

作者信息

Xiao Zhi-Guo, Chen Xian-Qing, Zhang Dong, Li Xin-Yuan, Dai Wen-Xin, Liang Wen-Hui

机构信息

School of Computer Science Technology, Changchun University, Changchun 130022, Jilin Province, China.

School of Computer Science Technology, Beijing Institute of Technology, Beijing 100811, China.

出版信息

World J Gastroenterol. 2024 Dec 28;30(48):5111-5129. doi: 10.3748/wjg.v30.i48.5111.

Abstract

BACKGROUND

Wireless capsule endoscopy (WCE) has become an important noninvasive and portable tool for diagnosing digestive tract diseases and has been propelled by advancements in medical imaging technology. However, the complexity of the digestive tract structure, and the diversity of lesion types, results in different sites and types of lesions distinctly appearing in the images, posing a challenge for the accurate identification of digestive tract diseases.

AIM

To propose a deep learning-based lesion detection model to automatically identify and accurately label digestive tract lesions, thereby improving the diagnostic efficiency of doctors, and creating significant clinical application value.

METHODS

In this paper, we propose a neural network model, WCE_Detection, for the accurate detection and classification of 23 classes of digestive tract lesion images. First, since multicategory lesion images exhibit various shapes and scales, a multidetection head strategy is adopted in the object detection network to increase the model's robustness for multiscale lesion detection. Moreover, a bidirectional feature pyramid network (BiFPN) is introduced, which effectively fuses shallow semantic features by adding skip connections, significantly reducing the detection error rate. On the basis of the above, we utilize the Swin Transformer with its unique self-attention mechanism and hierarchical structure in conjunction with the BiFPN feature fusion technique to enhance the feature representation of multicategory lesion images.

RESULTS

The model constructed in this study achieved an mAP50 of 91.5% for detecting 23 lesions. More than eleven single-category lesions achieved an mAP50 of over 99.4%, and more than twenty lesions had an mAP50 value of over 80%. These results indicate that the model outperforms other state-of-the-art models in the end-to-end integrated detection of human digestive tract lesion images.

CONCLUSION

The deep learning-based object detection network detects multiple digestive tract lesions in WCE images with high accuracy, improving the diagnostic efficiency of doctors, and demonstrating significant clinical application value.

摘要

背景

无线胶囊内镜(WCE)已成为诊断消化道疾病的重要无创便携式工具,并在医学成像技术进步的推动下得到了发展。然而,消化道结构的复杂性以及病变类型的多样性,导致不同部位和类型的病变在图像中呈现出明显差异,这给消化道疾病的准确识别带来了挑战。

目的

提出一种基于深度学习的病变检测模型,以自动识别并准确标记消化道病变,从而提高医生的诊断效率,创造显著的临床应用价值。

方法

本文提出了一种神经网络模型WCE_Detection,用于对23类消化道病变图像进行准确检测和分类。首先,由于多类别病变图像呈现出各种形状和尺度,在目标检测网络中采用多检测头策略,以提高模型对多尺度病变检测的鲁棒性。此外,引入了双向特征金字塔网络(BiFPN),通过添加跳跃连接有效地融合浅层语义特征,显著降低检测错误率。在此基础上,利用具有独特自注意力机制和层次结构的Swin Transformer结合BiFPN特征融合技术,增强多类别病变图像的特征表示。

结果

本研究构建的模型在检测23种病变时的mAP50达到了91.5%。超过11种单类别病变的mAP50超过99.4%,超过20种病变的mAP50值超过80%。这些结果表明,该模型在人体消化道病变图像的端到端综合检测中优于其他现有先进模型。

结论

基于深度学习的目标检测网络能够高精度地检测WCE图像中的多种消化道病变,提高了医生的诊断效率,具有显著的临床应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8a5/11612692/de75e44e6f7f/WJG-30-5111-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验