Suppr超能文献

UViT-Seg:一种基于 ViT 和 U-Net 的高效框架,用于在结肠镜和 WCE 图像中进行准确的结直肠息肉分割。

UViT-Seg: An Efficient ViT and U-Net-Based Framework for Accurate Colorectal Polyp Segmentation in Colonoscopy and WCE Images.

机构信息

LabSIV, Department of Computer Science, Faculty of Sciences, Ibnou Zohr University, Agadir, 80000, Morocco.

Informatics and Applications Laboratory, Department of Computer Sciences, Faculty of Science, Moulay Ismail University, B.P 11201, Meknès, 52000, Morocco.

出版信息

J Imaging Inform Med. 2024 Oct;37(5):2354-2374. doi: 10.1007/s10278-024-01124-8. Epub 2024 Apr 26.

Abstract

Colorectal cancer (CRC) stands out as one of the most prevalent global cancers. The accurate localization of colorectal polyps in endoscopy images is pivotal for timely detection and removal, contributing significantly to CRC prevention. The manual analysis of images generated by gastrointestinal screening technologies poses a tedious task for doctors. Therefore, computer vision-assisted cancer detection could serve as an efficient tool for polyp segmentation. Numerous efforts have been dedicated to automating polyp localization, with the majority of studies relying on convolutional neural networks (CNNs) to learn features from polyp images. Despite their success in polyp segmentation tasks, CNNs exhibit significant limitations in precisely determining polyp location and shape due to their sole reliance on learning local features from images. While gastrointestinal images manifest significant variation in their features, encompassing both high- and low-level ones, a framework that combines the ability to learn both features of polyps is desired. This paper introduces UViT-Seg, a framework designed for polyp segmentation in gastrointestinal images. Operating on an encoder-decoder architecture, UViT-Seg employs two distinct feature extraction methods. A vision transformer in the encoder section captures long-range semantic information, while a CNN module, integrating squeeze-excitation and dual attention mechanisms, captures low-level features, focusing on critical image regions. Experimental evaluations conducted on five public datasets, including CVC clinic, ColonDB, Kvasir-SEG, ETIS LaribDB, and Kvasir Capsule-SEG, demonstrate UViT-Seg's effectiveness in polyp localization. To confirm its generalization performance, the model is tested on datasets not used in training. Benchmarking against common segmentation methods and state-of-the-art polyp segmentation approaches, the proposed model yields promising results. For instance, it achieves a mean Dice coefficient of 0.915 and a mean intersection over union of 0.902 on the CVC Colon dataset. Furthermore, UViT-Seg has the advantage of being efficient, requiring fewer computational resources for both training and testing. This feature positions it as an optimal choice for real-world deployment scenarios.

摘要

结直肠癌(CRC)是全球最常见的癌症之一。在结肠镜检查图像中准确定位结直肠息肉对于及时发现和切除至关重要,对 CRC 的预防有重要意义。对胃肠道筛查技术生成的图像进行手动分析对医生来说是一项繁琐的任务。因此,计算机视觉辅助癌症检测可以作为息肉分割的有效工具。已经有许多致力于自动化息肉定位的努力,其中大多数研究依赖卷积神经网络(CNN)从息肉图像中学习特征。尽管它们在息肉分割任务中取得了成功,但由于仅依赖于从图像中学习局部特征,CNN 在准确确定息肉位置和形状方面存在显著的局限性。尽管胃肠道图像的特征存在显著差异,包括高低层次的特征,但需要一种能够同时学习息肉特征的框架。本文介绍了用于胃肠道图像中息肉分割的 UViT-Seg 框架。该框架基于编码器-解码器架构,采用两种不同的特征提取方法。编码器部分的视觉转换器捕捉远程语义信息,而 CNN 模块集成挤压激励和双注意力机制,捕捉低层次特征,关注关键图像区域。在五个公共数据集上进行的实验评估,包括 CVC 临床、ColonDB、Kvasir-SEG、ETIS LaribDB 和 Kvasir Capsule-SEG,证明了 UViT-Seg 在息肉定位中的有效性。为了确认其泛化性能,模型在未用于训练的数据集上进行测试。与常见的分割方法和最先进的息肉分割方法进行基准测试,该模型取得了有前景的结果。例如,它在 CVC 结肠数据集上的平均 Dice 系数为 0.915,平均交并比为 0.902。此外,UViT-Seg 的优势在于高效,在训练和测试时都需要较少的计算资源。这一特性使其成为实际部署场景的最佳选择。

相似文献

1
UViT-Seg: An Efficient ViT and U-Net-Based Framework for Accurate Colorectal Polyp Segmentation in Colonoscopy and WCE Images.
J Imaging Inform Med. 2024 Oct;37(5):2354-2374. doi: 10.1007/s10278-024-01124-8. Epub 2024 Apr 26.
2
Multi-scale nested UNet with transformer for colorectal polyp segmentation.
J Appl Clin Med Phys. 2024 Jun;25(6):e14351. doi: 10.1002/acm2.14351. Epub 2024 Mar 29.
3
Focus U-Net: A novel dual attention-gated CNN for polyp segmentation during colonoscopy.
Comput Biol Med. 2021 Oct;137:104815. doi: 10.1016/j.compbiomed.2021.104815. Epub 2021 Sep 2.
4
ColonGen: an efficient polyp segmentation system for generalization improvement using a new comprehensive dataset.
Phys Eng Sci Med. 2024 Mar;47(1):309-325. doi: 10.1007/s13246-023-01368-8. Epub 2024 Jan 15.
5
PolypSegNet: A modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images.
Comput Biol Med. 2021 Jan;128:104119. doi: 10.1016/j.compbiomed.2020.104119. Epub 2020 Nov 13.
7
SR-AttNet: An Interpretable Stretch-Relax Attention based Deep Neural Network for Polyp Segmentation in Colonoscopy Images.
Comput Biol Med. 2023 Jun;160:106945. doi: 10.1016/j.compbiomed.2023.106945. Epub 2023 Apr 21.
8
A lighter hybrid feature fusion framework for polyp segmentation.
Sci Rep. 2024 Oct 5;14(1):23179. doi: 10.1038/s41598-024-72763-8.
9
CTNet: Contrastive Transformer Network for Polyp Segmentation.
IEEE Trans Cybern. 2024 Sep;54(9):5040-5053. doi: 10.1109/TCYB.2024.3368154. Epub 2024 Aug 26.
10
HIGF-Net: Hierarchical information-guided fusion network for polyp segmentation based on transformer and convolution feature learning.
Comput Biol Med. 2023 Jul;161:107038. doi: 10.1016/j.compbiomed.2023.107038. Epub 2023 May 20.

引用本文的文献

1
Vision transformer distillation for enhanced gastrointestinal abnormality recognition in wireless capsule endoscopy images.
J Med Imaging (Bellingham). 2025 Jan;12(1):014505. doi: 10.1117/1.JMI.12.1.014505. Epub 2025 Feb 5.

本文引用的文献

1
SR-AttNet: An Interpretable Stretch-Relax Attention based Deep Neural Network for Polyp Segmentation in Colonoscopy Images.
Comput Biol Med. 2023 Jun;160:106945. doi: 10.1016/j.compbiomed.2023.106945. Epub 2023 Apr 21.
3
Colorectal cancer statistics, 2023.
CA Cancer J Clin. 2023 May-Jun;73(3):233-254. doi: 10.3322/caac.21772. Epub 2023 Mar 1.
4
Cancer statistics, 2023.
CA Cancer J Clin. 2023 Jan;73(1):17-48. doi: 10.3322/caac.21763.
5
Focus U-Net: A novel dual attention-gated CNN for polyp segmentation during colonoscopy.
Comput Biol Med. 2021 Oct;137:104815. doi: 10.1016/j.compbiomed.2021.104815. Epub 2021 Sep 2.
6
Polyp Segmentation with Fully Convolutional Deep Neural Networks-Extended Evaluation Study.
J Imaging. 2020 Jul 13;6(7):69. doi: 10.3390/jimaging6070069.
7
A deep CNN model for anomaly detection and localization in wireless capsule endoscopy images.
Comput Biol Med. 2021 Oct;137:104789. doi: 10.1016/j.compbiomed.2021.104789. Epub 2021 Aug 25.
8
Real-Time Polyp Detection, Localization and Segmentation in Colonoscopy Using Deep Learning.
IEEE Access. 2021 Mar 4;9:40496-40510. doi: 10.1109/ACCESS.2021.3063716. eCollection 2021.
9
PolypSegNet: A modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images.
Comput Biol Med. 2021 Jan;128:104119. doi: 10.1016/j.compbiomed.2020.104119. Epub 2020 Nov 13.
10
Detection of abnormality in wireless capsule endoscopy images using fractal features.
Comput Biol Med. 2020 Dec;127:104094. doi: 10.1016/j.compbiomed.2020.104094. Epub 2020 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验