Nasr-Esfahani E, Samavi S, Karimi N, Soroushmehr S M R, Ward K, Jafari M H, Felfeliyan B, Nallamothu B, Najarian K
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:643-646. doi: 10.1109/EMBC.2016.7590784.
Coronary artery disease (CAD) is the most common type of heart disease which is the leading cause of death all over the world. X-ray angiography is currently the gold standard imaging technique for CAD diagnosis. These images usually suffer from low quality and presence of noise. Therefore, vessel enhancement and vessel segmentation play important roles in CAD diagnosis. In this paper a deep learning approach using convolutional neural networks (CNN) is proposed for detecting vessel regions in angiography images. Initially, an input angiogram is preprocessed to enhance its contrast. Afterward, the image is evaluated using patches of pixels and the network determines the vessel and background regions. A set of 1,040,000 patches is used in order to train the deep CNN. Experimental results on angiography images of a dataset show that our proposed method has a superior performance in extraction of vessel regions.
冠状动脉疾病(CAD)是最常见的心脏病类型,也是全球主要的死亡原因。X射线血管造影术是目前CAD诊断的金标准成像技术。这些图像通常质量较低且存在噪声。因此,血管增强和血管分割在CAD诊断中起着重要作用。本文提出了一种使用卷积神经网络(CNN)的深度学习方法来检测血管造影图像中的血管区域。首先,对输入的血管造影图进行预处理以增强其对比度。然后,使用像素块对图像进行评估,网络确定血管和背景区域。为了训练深度CNN,使用了一组104万个块。对一个数据集的血管造影图像进行的实验结果表明,我们提出的方法在血管区域提取方面具有卓越的性能。