Nickerson Paul, Tighe Patrick, Shickel Benjamin, Rashidi Parisa
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2966-2969. doi: 10.1109/EMBC.2016.7591352.
Response to prescribed analgesic drugs varies between individuals, and choosing the right drug/dose often involves a lengthy, iterative process of trial and error. Furthermore, a significant portion of patients experience adverse events such as post-operative urinary retention (POUR) during inpatient management of acute postoperative pain. To better forecast analgesic responses, we compared conventional machine learning methods with modern neural network architectures to gauge their effectiveness at forecasting temporal patterns of postoperative pain and analgesic use, as well as predicting the risk of POUR. Our results indicate that simpler machine learning approaches might offer superior results; however, all of these techniques may play a promising role for developing smarter post-operative pain management strategies.
个体对处方镇痛药的反应各不相同,选择正确的药物/剂量通常需要漫长的反复试验过程。此外,在急性术后疼痛的住院治疗期间,很大一部分患者会经历诸如术后尿潴留(POUR)等不良事件。为了更好地预测镇痛反应,我们将传统机器学习方法与现代神经网络架构进行了比较,以评估它们在预测术后疼痛和镇痛使用的时间模式以及预测POUR风险方面的有效性。我们的结果表明,更简单的机器学习方法可能会提供更好的结果;然而,所有这些技术在制定更智能的术后疼痛管理策略方面可能都发挥着重要作用。