Suppr超能文献

用于预测镇痛反应的深度神经网络架构。

Deep neural network architectures for forecasting analgesic response.

作者信息

Nickerson Paul, Tighe Patrick, Shickel Benjamin, Rashidi Parisa

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2966-2969. doi: 10.1109/EMBC.2016.7591352.

Abstract

Response to prescribed analgesic drugs varies between individuals, and choosing the right drug/dose often involves a lengthy, iterative process of trial and error. Furthermore, a significant portion of patients experience adverse events such as post-operative urinary retention (POUR) during inpatient management of acute postoperative pain. To better forecast analgesic responses, we compared conventional machine learning methods with modern neural network architectures to gauge their effectiveness at forecasting temporal patterns of postoperative pain and analgesic use, as well as predicting the risk of POUR. Our results indicate that simpler machine learning approaches might offer superior results; however, all of these techniques may play a promising role for developing smarter post-operative pain management strategies.

摘要

个体对处方镇痛药的反应各不相同,选择正确的药物/剂量通常需要漫长的反复试验过程。此外,在急性术后疼痛的住院治疗期间,很大一部分患者会经历诸如术后尿潴留(POUR)等不良事件。为了更好地预测镇痛反应,我们将传统机器学习方法与现代神经网络架构进行了比较,以评估它们在预测术后疼痛和镇痛使用的时间模式以及预测POUR风险方面的有效性。我们的结果表明,更简单的机器学习方法可能会提供更好的结果;然而,所有这些技术在制定更智能的术后疼痛管理策略方面可能都发挥着重要作用。

相似文献

1
Deep neural network architectures for forecasting analgesic response.用于预测镇痛反应的深度神经网络架构。
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:2966-2969. doi: 10.1109/EMBC.2016.7591352.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验