Suppr超能文献

利用人工智能改善疼痛评估和管理:范围综述。

Using artificial intelligence to improve pain assessment and pain management: a scoping review.

机构信息

College of Nursing, University of Iowa, Iowa City, Iowa, USA.

Rory Meyers College of Nursing, New York University, New York, New York, USA.

出版信息

J Am Med Inform Assoc. 2023 Feb 16;30(3):570-587. doi: 10.1093/jamia/ocac231.

Abstract

CONTEXT

Over 20% of US adults report they experience pain on most days or every day. Uncontrolled pain has led to increased healthcare utilization, hospitalization, emergency visits, and financial burden. Recognizing, assessing, understanding, and treating pain using artificial intelligence (AI) approaches may improve patient outcomes and healthcare resource utilization. A comprehensive synthesis of the current use and outcomes of AI-based interventions focused on pain assessment and management will guide the development of future research.

OBJECTIVES

This review aims to investigate the state of the research on AI-based interventions designed to improve pain assessment and management for adult patients. We also ascertain the actual outcomes of Al-based interventions for adult patients.

METHODS

The electronic databases searched include Web of Science, CINAHL, PsycINFO, Cochrane CENTRAL, Scopus, IEEE Xplore, and ACM Digital Library. The search initially identified 6946 studies. After screening, 30 studies met the inclusion criteria. The Critical Appraisals Skills Programme was used to assess study quality.

RESULTS

This review provides evidence that machine learning, data mining, and natural language processing were used to improve efficient pain recognition and pain assessment, analyze self-reported pain data, predict pain, and help clinicians and patients to manage chronic pain more effectively.

CONCLUSIONS

Findings from this review suggest that using AI-based interventions has a positive effect on pain recognition, pain prediction, and pain self-management; however, most reports are only pilot studies. More pilot studies with physiological pain measures are required before these approaches are ready for large clinical trial.

摘要

背景

超过 20%的美国成年人报告称他们每天都会经历疼痛。未经控制的疼痛会导致医疗保健利用率增加、住院、急诊就诊和经济负担加重。使用人工智能 (AI) 方法识别、评估、理解和治疗疼痛可能会改善患者的治疗效果和医疗资源的利用。对以疼痛评估和管理为重点的基于人工智能的干预措施的当前使用和结果进行综合分析,将为未来的研究提供指导。

目的

本综述旨在调查旨在改善成人患者疼痛评估和管理的基于人工智能的干预措施的研究现状。我们还确定了基于人工智能的干预措施对成年患者的实际效果。

方法

搜索的电子数据库包括 Web of Science、CINAHL、PsycINFO、Cochrane CENTRAL、Scopus、IEEE Xplore 和 ACM Digital Library。最初的搜索确定了 6946 项研究。经过筛选,有 30 项研究符合纳入标准。使用批判性评估技能计划来评估研究质量。

结果

本综述提供的证据表明,机器学习、数据挖掘和自然语言处理被用于提高疼痛识别和疼痛评估的效率,分析自我报告的疼痛数据,预测疼痛,并帮助临床医生和患者更有效地管理慢性疼痛。

结论

本综述的研究结果表明,基于人工智能的干预措施对疼痛识别、疼痛预测和疼痛自我管理有积极影响,但大多数报告仅为试点研究。在这些方法准备好进行大规模临床试验之前,需要进行更多针对生理疼痛测量的试点研究。

相似文献

引用本文的文献

本文引用的文献

1
Convolution Neural Network for Pain Intensity Assessment from Facial Expression.卷积神经网络在面部表情疼痛强度评估中的应用。
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:2697-2702. doi: 10.1109/EMBC48229.2022.9871770.
7
Physiological responses to pain in cancer patients: A systematic review.癌症患者疼痛的生理反应:系统评价。
Comput Methods Programs Biomed. 2022 Apr;217:106682. doi: 10.1016/j.cmpb.2022.106682. Epub 2022 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验