Suppr超能文献

使用入耳式脑电图进行驾驶员嗜睡检测。

Driver drowsiness detection using the in-ear EEG.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:4646-4649. doi: 10.1109/EMBC.2016.7591763.

Abstract

Driver drowsiness monitoring is one of the most demanded technologies for active prevention of severe road accidents. Electroencephalogram (EEG) and several peripheral signals have been suggested for the drowsiness monitoring. However, each type of signal has partial limitations in terms of either convenience or accuracy. Recent emerged concept of in-ear EEG raises expectations due to reduced obtrusiveness. It is yet unclear whether the in-ear EEG is effective enough for drowsiness detection in comparison with on-scalp EEG or peripheral signals. In this work, we evaluated performance of the in-ear EEG in drivers' alertness-drowsiness classification for the first time. Simultaneously, we also tested three peripheral signals including electrocardiogram (ECG), photoplethysmogram (PPG), and galvanic skin response (GSR) which have advantage in convenience of measurement. The classification analysis using the in-ear EEG resulted in high classification accuracy comparable to that of the individual on-scalp EEG channels. The ECG, PPG and GSR showed competitive performance but only when used together in pairwise combinations. Our results suggest that the in-ear EEG would be viable alternative to the single channel EEG or the individual peripheral signals for the drowsiness monitoring.

摘要

驾驶员嗜睡监测是主动预防严重道路交通事故最急需的技术之一。脑电图(EEG)和几种外周信号已被用于嗜睡监测。然而,每种信号类型在便利性或准确性方面都有一定的局限性。最近出现的入耳式脑电图概念因其较低的干扰性而引发了人们的期待。与头皮脑电图或外周信号相比,入耳式脑电图在嗜睡检测方面是否足够有效尚不清楚。在这项工作中,我们首次评估了入耳式脑电图在驾驶员警觉-嗜睡分类中的性能。同时,我们还测试了三种外周信号,包括心电图(ECG)、光电容积脉搏波描记图(PPG)和皮肤电反应(GSR),它们在测量便利性方面具有优势。使用入耳式脑电图进行的分类分析得出了与单个头皮脑电图通道相当的高分类准确率。心电图、光电容积脉搏波描记图和皮肤电反应表现出有竞争力的性能,但只有在成对组合使用时才如此。我们的结果表明,入耳式脑电图将是用于嗜睡监测的单通道脑电图或单个外周信号的可行替代方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验