University of California Berkeley, Berkeley, CA, 94708, USA.
Nat Commun. 2024 Aug 2;15(1):6520. doi: 10.1038/s41467-024-48682-7.
Neural wearables can enable life-saving drowsiness and health monitoring for pilots and drivers. While existing in-cabin sensors may provide alerts, wearables can enable monitoring across more environments. Current neural wearables are promising but most require wet-electrodes and bulky electronics. This work showcases in-ear, dry-electrode earpieces used to monitor drowsiness with compact hardware. The employed system integrates additive-manufacturing for dry, user-generic earpieces, existing wireless electronics, and offline classification algorithms. Thirty-five hours of electrophysiological data were recorded across nine subjects performing drowsiness-inducing tasks. Three classifier models were trained with user-specific, leave-one-trial-out, and leave-one-user-out splits. The support-vector-machine classifier achieved an accuracy of 93.2% while evaluating users it has seen before and 93.3% when evaluating a never-before-seen user. These results demonstrate wireless, dry, user-generic earpieces used to classify drowsiness with comparable accuracies to existing state-of-the-art, wet electrode in-ear and scalp systems. Further, this work illustrates the feasibility of population-trained classification in future electrophysiological applications.
神经可穿戴设备可以为飞行员和驾驶员提供救生的困倦和健康监测。虽然现有的机舱内传感器可以提供警报,但可穿戴设备可以在更多环境中进行监测。现有的神经可穿戴设备很有前途,但大多数都需要湿电极和笨重的电子设备。这项工作展示了使用内置、干电极耳机来监测困倦的紧凑硬件。所采用的系统集成了用于干电极、用户通用耳机的增材制造、现有的无线电子设备和离线分类算法。九个被试在进行困倦诱导任务期间记录了 35 小时的生理数据。使用用户特定、留一试验外和留一用户外的划分,对三个分类器模型进行了训练。支持向量机分类器在评估以前见过的用户时达到了 93.2%的准确率,在评估从未见过的用户时达到了 93.3%的准确率。这些结果表明,无线、干式、用户通用的耳机可以以与现有最先进的湿电极入耳式和头皮系统相当的准确率来分类困倦。此外,这项工作说明了在未来的生理应用中使用群体训练分类的可行性。