Suppr超能文献

使用机器学习自动编码器对护士和非卫生专业人员的大脑皮层 EEG 进行多层次应激反应分类。

Classifying Multi-Level Stress Responses From Brain Cortical EEG in Nurses and Non-Health Professionals Using Machine Learning Auto Encoder.

机构信息

FEIT, School of Computer ScienceAustralian Artificial Intelligence Institute, University of Technology Sydney Ultimo NSW 2007 Australia.

Neuroscience Research Unit, School of Life SciencesUniversity of Technology Sydney Ultimo NSW 2007 Australia.

出版信息

IEEE J Transl Eng Health Med. 2021 May 5;9:2200109. doi: 10.1109/JTEHM.2021.3077760. eCollection 2021.

Abstract

OBJECTIVE

Mental stress is a major problem in our society and has become an area of interest for many psychiatric researchers. One primary research focus area is the identification of bio-markers that not only identify stress but also predict the conditions (or tasks) that cause stress. Electroencephalograms (EEGs) have been used for a long time to study and identify bio-markers. While these bio-markers have successfully predicted stress in EEG studies for binary conditions, their performance is suboptimal for multiple conditions of stress.

METHODS

To overcome this challenge, we propose using latent based representations of the bio-markers, which have been shown to significantly improve EEG performance compared to traditional bio-markers alone. We evaluated three commonly used EEG based bio-markers for stress, the brain load index (BLI), the spectral power values of EEG frequency bands (alpha, beta and theta), and the relative gamma (RG), with their respective latent representations using four commonly used classifiers.

RESULTS

The results show that spectral power value based bio-markers had a high performance with an accuracy of 83%, while the respective latent representations had an accuracy of 91%.

摘要

目的

精神压力是我们社会的一个主要问题,已成为许多精神科研究人员感兴趣的领域。一个主要的研究重点领域是确定生物标志物,这些标志物不仅能识别压力,还能预测导致压力的情况(或任务)。脑电图(EEG)长期以来一直被用于研究和识别生物标志物。虽然这些生物标志物在 EEG 研究中成功地预测了二元条件下的压力,但它们在多种压力条件下的表现并不理想。

方法

为了克服这一挑战,我们提出使用生物标志物的潜在表示形式,这已被证明可以显著提高 EEG 的性能,而不是单独使用传统的生物标志物。我们使用了四种常用的分类器,评估了三种常用的基于 EEG 的压力生物标志物,即脑负荷指数(BLI)、脑电频带(alpha、beta 和 theta)的光谱功率值以及相对伽马(RG)及其各自的潜在表示形式。

结果

结果表明,基于光谱功率值的生物标志物具有很高的性能,准确率为 83%,而各自的潜在表示形式的准确率为 91%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ea/8172183/aff4ac352758/lin1-3077760.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验