Suppr超能文献

一种用于使用动力下肢假肢的新用户的自适应模式识别系统的初步结果。

Preliminary results for an adaptive pattern recognition system for novel users using a powered lower limb prosthesis.

作者信息

Spanias John A, Simon Ann M, Perreault Eric J, Hargrove Levi J

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5083-5086. doi: 10.1109/EMBC.2016.7591870.

Abstract

Powered prosthetic legs are capable of improving the gait of lower limb amputees. Pattern recognition systems for these devices allow amputees to transition between different locomotion modes in a way that is seamless and transparent to the user. However, the potential of these systems is diminished because they require large amounts of training data that is burdensome to collect. To reduce the effort required to acquire these data, we developed an adaptive pattern recognition system that automatically learns from subject-specific data as the user is ambulating. We tested our proposed system with two able-bodied subjects ambulating with a powered knee and ankle prosthesis. Each subject initially ambulated with a pattern recognition system that was not trained with any data from that subject (making each subject a novel user). Initially, the pattern recognition system made frequent errors. With the adaptive algorithm, the error rate decreased over time as more subject-specific data were incorporated. When compared to a non-adaptive system, the adaptive system reduced the number of errors by 32.9% [8.6%], mean [standard deviation]. This study demonstrates the potential improvements of an adaptive pattern recognition system over non-adaptive systems presented in prior research.

摘要

电动假肢能够改善下肢截肢者的步态。这些设备的模式识别系统使截肢者能够以一种对用户无缝且透明的方式在不同运动模式之间转换。然而,这些系统的潜力有所降低,因为它们需要大量难以收集的训练数据。为了减少获取这些数据所需的工作量,我们开发了一种自适应模式识别系统,该系统在用户行走时自动从特定个体的数据中学习。我们使用两名佩戴电动膝关节和踝关节假肢行走的健全受试者对我们提出的系统进行了测试。每个受试者最初使用的模式识别系统都没有用该受试者的任何数据进行训练(使每个受试者都是新用户)。最初,模式识别系统频繁出错。随着自适应算法的应用,随着纳入更多特定个体的数据,错误率随时间下降。与非自适应系统相比,自适应系统将错误数量减少了32.9%[8.6%],平均值[标准差]。本研究证明了自适应模式识别系统相对于先前研究中提出的非自适应系统的潜在改进。

相似文献

1
Preliminary results for an adaptive pattern recognition system for novel users using a powered lower limb prosthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5083-5086. doi: 10.1109/EMBC.2016.7591870.
2
Across-user adaptation for a powered lower limb prosthesis.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:1580-1583. doi: 10.1109/ICORR.2017.8009473.
3
A Classification Method for User-Independent Intent Recognition for Transfemoral Amputees Using Powered Lower Limb Prostheses.
IEEE Trans Neural Syst Rehabil Eng. 2016 Feb;24(2):217-25. doi: 10.1109/TNSRE.2015.2412461. Epub 2015 Mar 16.
4
Delaying ambulation mode transitions in a powered knee-ankle prosthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5079-5082. doi: 10.1109/EMBC.2016.7591869.
5
6
Effects of locomotion mode recognition errors on volitional control of powered above-knee prostheses.
IEEE Trans Neural Syst Rehabil Eng. 2015 Jan;23(1):64-72. doi: 10.1109/TNSRE.2014.2327230. Epub 2014 Jun 4.
7
Improved Weight-Bearing Symmetry for Transfemoral Amputees During Standing Up and Sitting Down With a Powered Knee-Ankle Prosthesis.
Arch Phys Med Rehabil. 2016 Jul;97(7):1100-6. doi: 10.1016/j.apmr.2015.11.006. Epub 2015 Dec 11.
8
Delaying Ambulation Mode Transition Decisions Improves Accuracy of a Flexible Control System for Powered Knee-Ankle Prosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2017 Aug;25(8):1164-1171. doi: 10.1109/TNSRE.2016.2613020. Epub 2016 Sep 22.
9
Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2768-71. doi: 10.1109/EMBC.2012.6346538.
10
Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions.
PLoS One. 2015 Jul 21;10(7):e0133965. doi: 10.1371/journal.pone.0133965. eCollection 2015.

引用本文的文献

本文引用的文献

1
Controlling Knee Swing Initiation and Ankle Plantarflexion With an Active Prosthesis on Level and Inclined Surfaces at Variable Walking Speeds.
IEEE J Transl Eng Health Med. 2014 Jul 25;2:2100412. doi: 10.1109/JTEHM.2014.2343228. eCollection 2014.
2
Intuitive control of a powered prosthetic leg during ambulation: a randomized clinical trial.
JAMA. 2015 Jun 9;313(22):2244-52. doi: 10.1001/jama.2015.4527.
3
A Classification Method for User-Independent Intent Recognition for Transfemoral Amputees Using Powered Lower Limb Prostheses.
IEEE Trans Neural Syst Rehabil Eng. 2016 Feb;24(2):217-25. doi: 10.1109/TNSRE.2015.2412461. Epub 2015 Mar 16.
4
A strategy for labeling data for the neural adaptation of a powered lower limb prosthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3090-3. doi: 10.1109/EMBC.2014.6944276.
5
Configuring a powered knee and ankle prosthesis for transfemoral amputees within five specific ambulation modes.
PLoS One. 2014 Jun 10;9(6):e99387. doi: 10.1371/journal.pone.0099387. eCollection 2014.
6
Robotic leg control with EMG decoding in an amputee with nerve transfers.
N Engl J Med. 2013 Sep 26;369(13):1237-42. doi: 10.1056/NEJMoa1300126.
7
Intent recognition in a powered lower limb prosthesis using time history information.
Ann Biomed Eng. 2014 Mar;42(3):631-41. doi: 10.1007/s10439-013-0909-0. Epub 2013 Sep 20.
8
Control of stair ascent and descent with a powered transfemoral prosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2013 May;21(3):466-73. doi: 10.1109/TNSRE.2012.2225640. Epub 2012 Oct 19.
9
Upslope walking with a powered knee and ankle prosthesis: initial results with an amputee subject.
IEEE Trans Neural Syst Rehabil Eng. 2011 Feb;19(1):71-8. doi: 10.1109/TNSRE.2010.2087360. Epub 2010 Oct 14.
10
Real-time Gait Mode Intent Recognition of a Powered Knee and Ankle Prosthesis for Standing and Walking.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2009 Jan 27;2008:66-72. doi: 10.1109/BIOROB.2008.4762860.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验