Suppr超能文献

一种用于使用动力下肢假肢的经股骨截肢者的与用户无关的意图识别分类方法。

A Classification Method for User-Independent Intent Recognition for Transfemoral Amputees Using Powered Lower Limb Prostheses.

作者信息

Young Aaron J, Hargrove Levi J

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2016 Feb;24(2):217-25. doi: 10.1109/TNSRE.2015.2412461. Epub 2015 Mar 16.

Abstract

Powered lower limb prosthesis technologies hold the promise of providing greater ability and mobility to transfemoral amputees. Intent recognition systems for these devices may allow amputees to perform automatic, seamless transitions between locomotion modes. Prior studies in which pattern recognition algorithms have been trained to recognize subject-specific patterns within device-mounted sensor data have shown the feasibility of such systems. While effective, these strategies require substantial training regimens. To reduce this training burden, we developed and evaluated user-independent intent recognition systems. A novel mode-specific classification system was developed that allowed each locomotion transition to be statistically considered its own class. Various pattern recognition algorithms were trained with sensor data from a pool of eight lower limb amputees and performance was tested using data on a novel subject. For both user-dependent and user-independent classification, mode-specific classification reduced error ( ) on transitional steps by ∼ 50% without affecting steady-state classification. Incorporating sensor time history and level-ground walking data from the novel subject into the training data resulted in decreasing errors ( ) on steady-state classification by over 60% without affecting transitional error. These strategies were combined to demonstrate significant overall system improvements from baseline conditions presented in prior research.

摘要

电动下肢假肢技术有望为大腿截肢者提供更强的能力和行动能力。这些设备的意图识别系统可以让截肢者在不同运动模式之间进行自动、无缝的转换。此前的研究中,模式识别算法经过训练,以识别设备安装传感器数据中的特定个体模式,这些研究已经证明了此类系统的可行性。虽然有效,但这些策略需要大量的训练方案。为了减轻这种训练负担,我们开发并评估了独立于用户的意图识别系统。我们开发了一种新颖的特定模式分类系统,该系统允许将每次运动转换在统计上视为一个独立的类别。使用来自八名下肢截肢者的传感器数据对各种模式识别算法进行了训练,并使用一名新受试者的数据对性能进行了测试。对于依赖用户和独立于用户的分类,特定模式分类在过渡步骤上的错误率降低了约50%,而不会影响稳态分类。将新受试者的传感器时间历程和水平地面行走数据纳入训练数据,在不影响过渡错误的情况下,稳态分类的错误率降低了60%以上。这些策略相结合,证明了与先前研究中给出的基线条件相比,系统整体有显著改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验