Suppr超能文献

通过脑电图的庞加莱分析评估镇静镇痛效果。

Assessment of sedation-analgesia by means of Poincaré analysis of the electroencephalogram.

作者信息

Bolanos Jose D, Vallverdu Montserrat, Caminal Pere, Valencia Daniel F, Borrat Xavi, Gambus Pedro L, Valencia Jose F

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:6425-6428. doi: 10.1109/EMBC.2016.7592199.

Abstract

Monitoring the levels of sedation-analgesia may be helpful for managing patient stress on minimally invasive medical procedures. Monitors based on EEG analysis and designed to assess general anesthesia cannot distinguish reliably between a light and deep sedation. In this work, the Poincaré plot is used as a nonlinear technique applied to EEG signals in order to characterize the levels of sedation-analgesia, according to observed categorical responses that were evaluated by means of Ramsay Sedation Scale (RSS). To study the effect of high frequencies due to EMG activity, three different frequency ranges (FR1=0.5-110 Hz, FR2=0.5-30 Hz and FR3=30-110 Hz) were considered. Indexes from power spectral analysis and plasma concentration of propofol and remifentanil were also compared with the bispectral index BIS. An adaptive Neurofuzzy Inference System was applied to model the interaction of the best indexes with respect to RSS score for each analysis, and leave-one-out cross validation method was used. The ability of the indexes to describe the level of sedation-analgesia, according with the RSS score, was evaluated using the prediction probability (Pk). The results showed that the ratio SD1/SD2FR3 contains useful information about the sedation level, and SD1FR2 and SD2FR2 had the best performance classifying response to noxious stimuli. Models including parameters from Poincaré plot emerge as a good estimator of sedation-analgesia levels.

摘要

监测镇静镇痛水平可能有助于在微创医疗程序中管理患者的应激状态。基于脑电图(EEG)分析设计用于评估全身麻醉的监测器无法可靠地区分浅镇静和深镇静。在这项工作中,庞加莱图被用作一种应用于EEG信号的非线性技术,以便根据通过拉姆齐镇静评分量表(RSS)评估的观察到的分类反应来表征镇静镇痛水平。为了研究肌电图(EMG)活动引起的高频影响,考虑了三个不同的频率范围(FR1 = 0.5 - 110 Hz,FR2 = 0.5 - 30 Hz和FR3 = 30 - 110 Hz)。还将功率谱分析指标以及丙泊酚和瑞芬太尼的血浆浓度与脑电双频指数(BIS)进行了比较。应用自适应神经模糊推理系统对每次分析中最佳指标与RSS评分之间的相互作用进行建模,并使用留一法交叉验证方法。使用预测概率(Pk)评估指标根据RSS评分描述镇静镇痛水平的能力。结果表明,SD1/SD2FR3比值包含有关镇静水平的有用信息,并且SD1FR2和SD2FR2在对有害刺激的反应分类方面表现最佳。包含庞加莱图参数的模型是镇静镇痛水平的良好估计器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验