Kargarnovin Shaida, Hernandez Christopher, Farahani Farzad V, Karwowski Waldemar
Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA.
Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA.
Brain Sci. 2023 May 17;13(5):813. doi: 10.3390/brainsci13050813.
(1) Background: Chaos, a feature of nonlinear dynamical systems, is well suited for exploring biological time series, such as heart rates, respiratory records, and particularly electroencephalograms. The primary purpose of this article is to review recent studies using chaos theory and nonlinear dynamical methods to analyze human performance in different brain processes. (2) Methods: Several studies have examined chaos theory and related analytical tools for describing brain dynamics. The present study provides an in-depth analysis of the computational methods that have been proposed to uncover brain dynamics. (3) Results: The evidence from 55 articles suggests that cognitive function is more frequently assessed than other brain functions in studies using chaos theory. The most frequently used techniques for analyzing chaos include the correlation dimension and fractal analysis. Approximate, Kolmogorov and sample entropy account for the largest proportion of entropy algorithms in the reviewed studies. (4) Conclusions: This review provides insights into the notion of the brain as a chaotic system and the successful use of nonlinear methods in neuroscience studies. Additional studies of brain dynamics would aid in improving our understanding of human cognitive performance.
(1) 背景:混沌是非线性动力系统的一个特征,非常适合用于探索生物时间序列,如心率、呼吸记录,尤其是脑电图。本文的主要目的是综述近期使用混沌理论和非线性动力学方法分析不同脑过程中人类表现的研究。(2) 方法:多项研究考察了混沌理论及相关分析工具来描述脑动力学。本研究对为揭示脑动力学而提出的计算方法进行了深入分析。(3) 结果:55篇文章的证据表明,在使用混沌理论的研究中,认知功能比其他脑功能更常被评估。分析混沌最常用的技术包括关联维数和分形分析。在综述研究中,近似熵、柯尔莫哥洛夫熵和样本熵在熵算法中占比最大。(4) 结论:本综述为将大脑视为混沌系统的概念以及非线性方法在神经科学研究中的成功应用提供了见解。对脑动力学的更多研究将有助于增进我们对人类认知表现的理解。