Suppr超能文献

基于GPU加速遗传算法/多层感知器混合算法的表面肌电信号特征提取与多分类

Features extraction and multi-classification of sEMG using a GPU-Accelerated GA/MLP hybrid algorithm.

作者信息

Luo Weizhen, Zhang Zhongnan, Wen Tingxi, Li Chunfeng, Luo Ziheng

出版信息

J Xray Sci Technol. 2017;25(2):273-286. doi: 10.3233/XST-17259.

Abstract

BACKGROUND

Surface electromyography (sEMG) signal is the combined effect of superficial muscle EMG and neural electrical activity. In recent years, researchers did large amount of human-machine system studies by using the physiological signals as control signals.

OBJECTIVE

To develop and test a new multi-classification method to improve performance of analyzing sEMG signals based on public sEMG dataset.

METHODS

First, ten features were selected as candidate features. Second, a genetic algorithm (GA) was applied to select representative features from the initial ten candidates. Third, a multi-layer perceptron (MLP) classifier was trained by the selected optimal features. Last, the trained classifier was used to predict the classes of sEMG signals. A special graphics processing unit (GPU) was used to speed up the learning process.

RESULTS

Experimental results show that the classification accuracy of the new method reached higher than 90%. Comparing to other previously reported results, using the new method yielded higher performance.

CONCLUSIONS

The proposed features selection method is effective and the classification result is accurate. In addition, our method could have practical application value in medical prosthetics and the potential to improve robustness of myoelectric pattern recognition.

摘要

背景

表面肌电图(sEMG)信号是浅表肌肉肌电图和神经电活动的综合效应。近年来,研究人员利用生理信号作为控制信号进行了大量人机系统研究。

目的

开发并测试一种新的多分类方法,以提高基于公开sEMG数据集分析sEMG信号的性能。

方法

首先,选择十个特征作为候选特征。其次,应用遗传算法(GA)从最初的十个候选特征中选择代表性特征。第三,使用所选的最优特征训练多层感知器(MLP)分类器。最后,使用训练好的分类器预测sEMG信号的类别。使用特殊的图形处理单元(GPU)来加速学习过程。

结果

实验结果表明,新方法的分类准确率达到90%以上。与其他先前报道的结果相比,新方法具有更高的性能。

结论

所提出的特征选择方法有效,分类结果准确。此外,我们的方法在医疗假肢中可能具有实际应用价值,并有可能提高肌电模式识别的鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验