Suppr超能文献

基于高密度表面肌电信号的上肢肌电假肢功能自适应肌肉选择

Functionally Adaptive Myosite Selection Using High-Density sEMG for Upper Limb Myoelectric Prostheses.

出版信息

IEEE Trans Biomed Eng. 2023 Oct;70(10):2980-2990. doi: 10.1109/TBME.2023.3274053. Epub 2023 Sep 27.

Abstract

OBJECTIVE

Our study defines a novel electrode placement method called Functionally Adaptive Myosite Selection (FAMS), as a tool for rapid and effective electrode placement during prosthesis fitting. We demonstrate a method for determining electrode placement that is adaptable towards individual patient anatomy and desired functional outcomes, agnostic to the type of classification model used, and provides insight into expected classifier performance without training multiple models.

METHODS

FAMS relies on a separability metric to rapidly predict classifier performance during prosthesis fitting.

RESULTS

The results show a predictable relationship between the FAMS metric and classifier accuracy (3.45%SE), allowing estimation of control performance with any given set of electrodes. Electrode configurations selected using the FAMS metric show improved control performance ( ) for target electrode counts compared to established methods when using an ANN classifier, and equivalent performance ( R ≥ .96) to previous top-performing methods on an LDA classifier, with faster convergence ( ). We used the FAMS method to determine electrode placement for two amputee subjects by using the heuristic to search through possible sets, and checking for saturation in performance vs electrode count. The resulting configurations that averaged 95.8% of the highest possible classification performance using a mean 25 number of electrodes (19.5% of the available sites).

SIGNIFICANCE

FAMS can be used to rapidly approximate the tradeoffs between increased electrode count and classifier performance, a useful tool during prosthesis fitting.

摘要

目的

我们定义了一种新的电极放置方法,称为功能自适应肌电选择(FAMS),作为在假体适配过程中快速有效放置电极的工具。我们展示了一种可根据个体患者解剖结构和预期功能结果进行自适应电极放置的方法,与所使用的分类模型类型无关,并在不训练多个模型的情况下提供对预期分类器性能的洞察。

方法

FAMS 依赖于可分离性度量来快速预测假体适配过程中的分类器性能。

结果

结果显示 FAMS 度量与分类器准确性之间存在可预测的关系(3.45%SE),允许根据任何给定的电极集来估计控制性能。与使用 ANN 分类器的既定方法相比,使用 FAMS 度量选择的电极配置显示出更好的控制性能(),对于目标电极计数,并且在 LDA 分类器上与以前表现最佳的方法等效性能(R≥.96),收敛速度更快()。我们使用 FAMS 方法通过使用启发式搜索可能的集合并检查性能与电极计数的饱和情况,为两名截肢患者确定电极放置。结果配置平均使用 25 个电极(可用电极数的 19.5%)即可达到最高分类性能的 95.8%。

意义

FAMS 可用于快速估算增加电极数和分类器性能之间的权衡,这在假体适配过程中是一个有用的工具。

相似文献

本文引用的文献

1
Genetic Algorithm for Feature Selection in Lower Limb Pattern Recognition.用于下肢模式识别中特征选择的遗传算法
Front Robot AI. 2021 Oct 25;8:710806. doi: 10.3389/frobt.2021.710806. eCollection 2021.
8
Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions.基于肌电信号的手部运动分类技术的多日评估。
IEEE J Biomed Health Inform. 2019 Jul;23(4):1526-1534. doi: 10.1109/JBHI.2018.2864335. Epub 2018 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验